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Broadly, my guiding question is: What tasks can be performed efficiently in a universe governed
by quantum mechanics? This question has implications for both physics and computation. For the
latter, quantum computers are poised to reshape the landscape of computation, with downstream
effects across society. For the former, many fundamental questions in physics ask what we can
do in a quantum world, making them algorithmic at heart: can nature produce exotic quantum
phenomena? How can we witness this, either by experiment or by simulation?

Concretely, I work on quantum algorithms, investigating applications of quantum computing :
my PhD work is on machine learning, and my recent work is on many-body quantum systems. Such
systems—think large molecules, superconducting materials, anything where entanglement comes
into the picture—are a central subject of computational scrutiny across physics and chemistry. Both
applications present bold visions of paradigm-shifting speedups over our usual, ‘classical’ computers,
but proving the existence of such speedups is surprisingly tricky [A15; L+23]. My goal is to pin
down formal evidence for what we can actually expect from the quantum computers of the future.
Some insights I’ve made include the following.

1. Showing that a large class of quantum machine learning algorithms do not admit
exponential speedups [T19; T21; CGLLTW20; CGLLTW22].1 At the time, a growing body
of work had suggested that quantum computers could achieve massive speedups for a broad
class of tasks in linear algebra. I created a model of ‘quantum-inspired’ classical algorithms
which matches the performance of these quantum algorithms, showing that these hopes were
in fact false. Through this work, we now understand that quantum speedups in machine
learning are likely limited to highly specialized data.

2. Giving the first efficient algorithm for learning the parameters of an unknown
quantum system at thermal equilibrium [BLMT24b].2 It had been conjectured that no
efficient algorithm existed [AA23], roughly meaning that a scientist wishing to identify the
underlying mechanics of a system in their lab must perform an exponentially long computation,
an intractable barrier. My work shows that the scientist can rest easy, at least in theory.

3. Showing that ‘heat destroys entanglement’: quantum systems above a constant
temperature exhibit zero entanglement [BLMT24c]. This work started with the algorith-
mic question of when we can efficiently simulate the kind of systems from the aforementioned
learning result [BLMT24b], but through our algorithm we uncovered this deeper structural
‘law’ describing the relationship between entanglement and temperature. This result cuts
against the intuitions from a large body of work on entanglement at thermal equilibrium.

Moving forward, I intend to continue working on designing algorithmic approaches for doing
science. This kind of work excites me, as it features a rich interplay between fields: from science
comes a wealth of impactful questions, and from computer science comes a wealth of algorithmic
tools to resolve them. Both sides benefit from the exchange: the right algorithm leads to new
discoveries, and scientific inquiry fosters beautiful CS theory. I have found this to be the case
for my research in quantum algorithms: working towards this aim has elicited understanding and,
sometimes, surprising implications for both physics and computer science. In what follows, I describe
my work and future plans in more detail.

1My first two papers [T19; T21] were jointly awarded a plenary talk and best student paper at QIP 2020.
2This work [BLMT24b] was awarded a plenary talk at QIP 2024.



1 Quantum speed-ups in machine learning?

I began my career studying quantum machine learning (QML). The pitch for QML proceeds as follows.
By the rules of quantum mechanics, nature implicitly runs massive matrix computations to evolve
even simple systems. We might then hope to trick nature into using its linear algebraic processor
for our own purposes, like, say, linear regression [HHL09] (or principal component analysis [LMR14],
semi-definite programming [BS17], etc.) far faster than we can on classical computers.

QML took off in the 2010’s, with a range of proposals along these lines appearing to achieve
an exponential speedup, the largest speedup possible for quantum computation [BWPRWL17;
P18]. If true, these speedups would be far more general than any other kind of speedup in its
class. The omnipresence of linear algebra in industry means that such a seismic speedup could
revolutionize society in the same way classical computation did. However, analyzing these claims is
not straightforward, as these QML algorithms typically assume that input vectors and matrices
are already ‘loaded’ into the quantum computer as quantum states [A15], and so do not take into
account the cost of loading. In essence, these proposals are assuming that their data is in a sort of
data structure, and then not counting the (otherwise ruinously large) pre-processing cost of creating
the data structure. It wasn’t known how to compare this to classical algorithms, leaving us in
the dark on the true nature of these speedups. The most promising QML algorithm was one for
low-rank approximation from Kerenidis and Prakash [KP17], as it made its loading step explicit
enough that one could conceivably prove a genuine exponential speedup.

Results. I failed to prove a speedup; instead, I discovered that none exists: the algorithm of
Kerenidis and Prakash [KP17] admits no exponential speedup [T19]. This led to a sea change in
the field. I then invented a framework for comparing QML algorithms to classical algorithms [T21],
by defining a data structure for classical computers which is analogous to quantum computers
receiving their input preloaded into quantum states. In this and subsequent joint work with
collaborators [CGLLTW20; CGLLTW22; BT24; T22], I showed that this data structure made
classical computers about as strong as quantum in many settings, ultimately concluding that nine of
the most notable QML algorithms do not admit exponential speedups. This work radically reshaped
our understanding of exponential speedups in quantum computing, changing what could have been
a wide lane for advantage into mostly a dead-end [A22; D+23; P22], with remaining proposals
ekeing out advantage only under exceptional, specialized circumstances [KLLP19; YSSK20; B+24b].

This work leverages a crucial issue in QML: though quantum computers can manipulate data
extremely efficiently, extracting features from the computer is difficult. Often, QML proposals
assume that input data is low-rank, since then there is a signal large enough to extract; my work
shows that this signal must also be large enough to be present in extremely small subsamples of
the data. The natural choice of classical data structure allows for efficient subsampling, specifically
what’s called ℓ2 importance sampling in the classical ‘sketching’ literature [FKV04; KV17]. I
developed a quantum-inspired theory of importance sampling to simulate the techniques in QML.

My work also provides insight on classical algorithms, demonstrating that importance sampling
possesses unexpected strength. We show that, if given a low-rank matrix A in the aforementioned
data structure, we can simulate the same data structure for p(A), a polynomial applied to A,
in essentially constant time, much faster than reading the full input. This follows from natural
compositional properties of the data structure, that it is, in a sense, closed under multiplication and
addition. These properties are very similar to the QML data structures which form the basis of
the well-known meta-algorithm, ‘quantum singular value transformation’ (QSVT) [GSLW19]. In
the sketching literature, compositionality is a familiar but perhaps under-appreciated property; my
work presents a unique perspective by showing that importance sampling, unlike the other tools



common in that literature, enjoys a vast compositional reach in merely constant time.

2 Learning and simulating big quantum systems

My other line of work is on another promising application of quantum computing: understanding
many-body quantum systems. This is the arena in which Feynman originally dreamed quantum
computers could find success. The demand for algorithmic advances here is larger than ever, as this
type of computation is the bottleneck for resolving many basic questions across physics and chemistry.
Determining the behavior of electrons in the reactions studied in quantum chemistry [C24], mapping
out the phase transitions studied in condensed matter [L+15], simulating the Standard Model
physics which occur in particle accelerators [D+23]—all these are versions of this task, and all still
elude our best supercomputers.

For these systems, we demand efficient algorithms for answering the questions of the scientist
who studies them. Such a scientist seeks to understand the relationship between the macroscopic
behavior of a system and the underlying mechanisms which drive it. So, we ask the complementary
questions of learning and simulation: given measurements of an unknown system in a lab, can I
efficiently learn its mechanics; and given a description of a system’s mechanics, can I efficiently
simulate it on a quantum computer?

Beyond being relevant to practice, these directions comprise a new algorithmic perspective for
tackling questions in basic physics: instead of asking what is possible, we ask what is possible
efficiently. Everything we observe, from the chemicals in our beakers to the black holes in our
telescopes, is the output of a universe which was given fairly little time to prepare it [L02]. It
follows, then, that any phenomenon we hope to discover or reproduce must be one which can be
produced efficiently [A05]. In this sense, simulation and learning ask, what kinds of systems can
nature prepare; and what properties of systems are “feelable”, in the sense that we can detect them
through experiment? I have thought about this question across a variety of basic systems [HKOT23;
BLMT24c; B+24a; PTTW24], but in this statement I’d like to highlight one of the most natural
versions of this problem, where we suppose the system has reached equilibrium at a certain
temperature, forming a ‘Gibbs state’.

A quantum system is modeled by a Hamiltonian H, which is an exponentially large matrix
encoding local interaction forces.3 This Hamiltonian governs everything about a system, from its
dynamics, i.e. how it evolves from an initial state, to various types of equilibrium states which are
fixed under the dynamics, including its Gibbs state. For applications, we are interested in how the
macroscopic properties of the Gibbs state, like its energy and phase of matter, changes as we vary
atomic-scale interaction strengths. Simulation and learning of Gibbs states is about going between
the two; both tasks are faced by experimentalists [KBEVZ21].

Results. On the learning side, my work culminates in an algorithm for learning a Hamiltonian
from copies of Gibbs states at any temperature [HKT22; BLMT24b]. Importantly, we can still
efficiently learn the forces driving the quantum systems of greatest interest to physicists—ones which
are cold enough to have long-range entanglement and exhibit exotic quantum phenomena. Though
this task is easy for classical systems, the presence of entanglement prevents classical algorithms
from extending naturally. In fact, some had suggested that entanglement makes learning, and the
physicist’s job, inherently computationally difficult [AA23]. To the contrary, we show that the

3For example, in models like the Ising model, there are n sites which correspond to atoms in a lattice, and the
2n × 2n-sized Hamiltonian describes something like a magnetic force, which dictates that atoms which are nearby in
the lattice want to be magnetically aligned. For the purposes of this statement, we only consider systems which are
locally interacting, meaning that the Hamiltonian only contains interactions between nearby particles.



entanglement can be tamed with a deft application of ideas from quantum information and convex
optimization.

On the simulation side, my work [BLMT24a] shows that Gibbs states above a critical temperature
can be simulated efficiently; and, surprisingly, our proof that the algorithm succeeds also proves
that such states have zero entanglement. This result came as a shock. Prior intuition, informed by
a large body of literature on entanglement in Gibbs states [A23], proceeds as follows. Entanglement
is a (quantum) type of correlation, and we would expect a system at high temperature to be fairly
uncorrelated. Indeed, we can prove bounds on the amount of correlation at high temperature.
But these systems always have at least some correlation, so we would expect that the amount of
entanglement is also never zero.

Nevertheless, we demonstrate the ‘death’ of entanglement at high temperature. This is a striking
instance in which a structural result about physics was discovered via an algorithmic technique. Our
novel technique is an adaptation of the sampling-to-counting reduction [SJ89], the classic method
for sampling from an n-bit distribution by sampling one bit at a time, recursively splitting it into a
marginal and a posterior. A priori, using this seems hopeless, since such a splitting cannot be done
in quantum systems due to entanglement. However, we attempt the strategy anyways, and find
that we can get a strong enough control over correlations between parts of the system to make this
approach succeed, proving lack of entanglement in the process. We anticipate that this approach
will have purchase for understanding entanglement in other settings.

3 Future directions

The limits of scientific inquiry are often computational: when experiments fail, we turn to simulation
to understand the world. My sights are set toward developing algorithms to advance science. In
addition to quantum algorithms, these include computational methods based on classical numerical
linear algebra [S11; M19], machine learning, and statistics [D08; RSS19]. Though I can’t predict
what specific directions will bear fruit in the future, I expect that looking at science through the
lens of computation will always generate insight.

The following are specific directions I intend to pursue.

More to do in big quantum systems. I’m excited to continue investigating problems in
many-body quantum systems. In particular, I think simulation is the most promising application
of quantum computing. No-go results had stalled prior investigations of this, but recent results
have opened a new angle of attack: Monte Carlo-style methods for preparing Gibbs states, i.e.
quantum systems at thermal equilibrium [CKBG23]. A flurry of recent results demonstrates that a
variety of standard algorithms for the classical version of this problem lift to corresponding quantum
algorithms. However, we have no idea if these will actually work, since we have almost no bounds
on the mixing times of these algorithms for interesting systems. So, I would like to build a theory of
mixing times of quantum systems.

A first, tractable step would be to ‘quantize’ the classical Markov chain theory to whatever
extent possible, but my aim is to go beyond this theory to tackle uniquely quantum phenomena. I
will describe just one such question of several: the physics of quantum thermalization. Quantum
mechanics is reversible, meaning that time-reversed quantum mechanics is still quantum mechanics.
However, we model large systems with thermodynamics, which is irreversible, since entropy increases
with time. How do we deal with the fundamental incongruity between these two theories? My work
on high-temperature Gibbs states has already been used to give partial answers to this question [H24;
PC24]; however, we have far from a complete picture. I hope to build mathematical frameworks to
reconcile this incongruity, and show that an arrow of time can emerge from pure quantum mechanics.



Another open question: can we develop an algorithm, quantum or classical, to find high-
temperature superconductors? Our current understanding of this problem is very minimal [HK-
TAP22], but it is more within grasp than it might seem. My past work is on relating Hamiltonians
to their Gibbs states; the difference is here, we want to optimize over a class of Hamiltonians to find
a Gibbs state satisfying some efficiently checkable property, i.e. superconductivity.

Complexity theory in a quantum world. To build a theory of what is possible with quan-
tum computation, we need an idea of what is impossible with quantum computation. Recent
breakthroughs have made clear that we still lack understanding of even basic questions about
quantum hardness: are “fully quantum” problems fundamentally harder than any classical prob-
lem [LMW24]? Can we build cryptography from the hardness of random quantum circuits, even
when P = NP [KQST23]?

My particular interest is in Hamiltonian complexity, characterizing the hardness of Hamiltonian
problems. The landmark question in this domain is the quantum PCP conjecture [AAV13], which
conjectures that solving Hamiltonian problems approximately is, in the worst case, as hard as solving
them exactly. However, I’m interested broadly in how to robustly embed properties in the solutions
of Hamiltonian problems. Certain kinds of robust properties are what physicists call phases of
matter, and so have import on condensed matter physics and related engineering questions, like on
the existence of self-correcting quantum memory. I’d love to explore these connections further, to
understand what is possible in a quantum world.
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