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Motivation

I have an unknown single-qubit unitary U;

how do I estimate U to ε error?
how many uses of U do I need?

Naive: estimate U|0〉,  U|1〉,  U|+〉 to ε error 
and reconstruct U.

complexity: O(1/ε2) uses of U

But we can do better!

Θ(1/ε) uses is necessary and sufficient.
“Heisenberg-limited scaling”
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What can we learn with 1/ε error scaling?



Learning in 1/ε evolution time (the “Heisenberg limit”)

To learn a n-qubit unitary U, we need Θ(22n/ε) queries to U. [Haah, Kothari, O’Donnell, T ‘23]

We want to replicate this, but for tractable classes of unitaries.

“Physically reasonable” choice: evolutions of local Hamiltonians

U(t) = e-iHt for H a local Hamiltonian (Θ(n) unknown parameters).
NB: “fractional queries” are allowed, U(t) counts for t queries

Can we learn this class with poly(n)/ε queries?

Problem: [HKOT’23] uses algebraic structure of the hypothesis class SU(n)

But Heisenberg scaling is still possible!



Learning Hamiltonians with Heisenberg scaling

Given the ability to apply U(t) = e-iHt for a 
local Hamiltonian H with known terms and 
unknown parameters, we can learn its 
parameters in Θ(log(n)/ε) queries. [Huang, 
Tong, Fang, Su ‘23]

Technique: dynamical decoupling

But this technique is brittle: it requires

> Knowledge of locality graph
> “Short-range” locality
> A large amount of control: applying U(t) 

for t ~ sqrt(ε)



Results
We give a technique for Heisenberg-limited Hamiltonian 
learning which is much more flexible than dynamical 
decoupling on several axes.

Our algorithm can:

1. Learn without prior knowledge of the “structure” (i.e. 
the terms)

2. Smoothly handle long-range terms
3. Learn with only applying U(t) for t = Ω(1)

And it’s (pretty) simple!

See the paper for a detailed comparison with prior work.



Idea: “error amplification” into “term cancellation”

[HKOT’23]: Don’t estimate U to ε error;
amplify, then estimate to constant error:

1. Start with an η-good estimate V
2. Estimate the amplified error E = (UV†)ℓ to 

constant error (ℓ = Θ(1/η))
3. The corrected estimate (Ê)1/ℓV is η/2-good
4. Iterate

We adapt this framework.

Our algorithm:

1. Start with the estimate V(t) = e-iGt

2. “Learn the Hamiltonian F” of
E = (U(t)V(-t))ℓ

3. Correct G to G + F/tℓ
4. Iterate

Constant-error Hamiltonian learning is 
easy and works in very broad generality.

Our algorithm inherits the generality of 
constant-error Hamiltonian learning.



Idea: “error amplification” into “term cancellation”

[HKOT’23]: Don’t estimate U to ε error;
amplify, then estimate to constant error:

1. Start with an η-good estimate V
2. Estimate the amplified error E = (UV†)ℓ to 

constant error (ℓ = Θ(1/η))
3. The corrected estimate (Ê)1/ℓV is η/2-good
4. Iterate

We adapt this framework.

Our algorithm:

1. Start with the estimate V(t) = e-iGt

2. “Learn the Hamiltonian F” of
E = (U(t)V(-t))ℓ

3. Correct G to G + F/tℓ
4. Iterate

Constant-error Hamiltonian learning is 
easy and works in very broad generality.

Our algorithm inherits the generality of 
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Key lemma: for small constant t,
E looks like a real-time evolution to the 
constant-error learning algorithm.



Bonus technique: faster “operator” shadows

Our algorithm is FPT (has no nk dependence)

FPT “operator shadows”: for an observable O, we can estimate the large tr(OP) for 
low-degree Paulis P without brute-force checking.

Technique: Pauli Goldreich–Levin



Thank you!

credit: Kristina Armitage


