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Motivation

| have an unknown single-qubit unitary U;

how do | estimate U to € error?
how many uses of U do | need?

Naive: estimate U[0), U[1), U[+)to € error
and reconstruct U.

complexity: O(1/€?) uses of U

But we can do better!

O(1/¢) uses is necessary and sufficient.

“Heisenberg-limited scaling”
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Learning in 1/¢ evolution time (the “Heisenberg limit”)

To learn a n-qubit unitary U, we need 0(2?"/¢) queries to U. [Haah, Kothari, O'Donnell, T 23]
We want to replicate this, but for tractable classes of unitaries.
“Physically reasonable” choice: evolutions of local Hamiltonians

U(t) = e for H a local Hamiltonian ((n) unknown parameters).
NB: “fractional queries” are allowed, U(t) counts for t queries

Can we learn this class with poly(n)/s queries?
Problem: [HKOT'23] uses algebraic structure of the hypothesis class SU(n)

But Heisenberg scaling is still possible!



Learning Hamiltonians with Heisenberg scaling

Given the ability to apply U(t) = e for a But this technique is brittle: it requires
local Hamiltonian H with known terms and
unknown parameters, we can learn its
parameters in O(log(n)/e) queries. [Huang,
Tong, Fang, Su 23]

> Knowledge of locality graph

> “Short-range” locality

> A large amount of control: applying U(t)
for t ~ sqrt(e)

Technique: dynamical decoupling




Results

We give a technique for Heisenberg-limited Hamiltonian
learning which is much more flexible than dynamical
decoupling on several axes.

Our algorithm can:

1. Learn without prior knowledge of the “structure” (i.e.
the terms)

2. Smoothly handle long-range terms

3. Learn with only applying U(t) for t = Q(1)

And it's (pretty) simple!

See the paper for a detailed comparison with prior work.



Idea: “error amplification” into “term cancellation”

[HKOT'23]: Don't estimate U to ¢ error; Our algorithm:

amplify, then estimate to constant error: , , )
PHTY 1. Start with the estimate V(t) = ¢t

1. Start with an n-good estimate V 2. “lLearn the Hamiltonian F” of
2. Estimate the amplified error E = (UV")! to E = (Ut)V(-t))
constant error (£ = ©(1/n)) 3. CorrectGto G + F/tP
3. The corrected estimate (E)"*V is n/2-good 4. Iterate
4. Iterate

Constant-error Hamiltonian learning is
We adapt this framework. easy and works in very broad generality.

Our algorithm inherits the generality of
constant-error Hamiltonian learning.
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Bonus technique: faster “operator” shadows

Our algorithm is FPT (has no n* dependence)

FPT “operator shadows”: for an observable O, we can estimate the large tr(OP) for
low-degree Paulis P without brute-force checking.

Technique: Pauli Goldreich-Levin



Thank you!
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