
Quantum and quantum-inspired linear algebra

Ewin Tang Christopher Kang

July 24–28, 2023

0 Preface
These are the lecture notes for a 5-lecture mini-course I taught at the 2023 PCMI graduate
summer school. Christopher Kang served as TA, and contributed to this document by
helping create problem sets. The abstract for the mini-course is as follows:

Abstract

An exciting recent line of work unifies many interesting quantum algorithms
under a powerful linear algebraic framework known as “quantum singular value
transformation” (QSVT). We’ll introduce this framework, build some tools in poly-
nomial approximation that are helpful for applying it, and investigate what kinds of
results it can achieve. Our goal will be to understand how and when to use QSVT
in quantum algorithm design, and ultimately, whether it can reveal new quantum
speedups for interesting problems in data analysis, machine learning, or quantum
simulation.

I ended up covering the following topics. The first two lectures give a near-complete
picture of the theory of QSVT as given by Gilyén, Su, Low, and Wiebe [GSLW19]. Here,
I crib from my exposition of this with Kevin Tian [TT24]; our proofs are ultimately the
same as the originals, but ours are clean enough that they can be reasonably presented in
a lecture.

The third lecture covers polynomial approximation, the central mathematical tool
appearing in QSVT applications. The material is taken from one of my favorite text-
books [Tre19], with the exposition again following mine and Kevin Tian’s [TT24], which
gives versions of these results which are targeted towards users of QSVT.

The final two lectures discuss quantum-inspired algorithms, which is a theory of QSVT
for classical algorithms which I worked on in my undergrad and PhD. From this theory, we
can conclude that quantum linear algebra techniques don’t give exponential speedups for a
broad range of classical machine learning tasks; but also, it illuminates the extent to which
QSVT can work without a quantum computer. I cover ideas mainly from [CGLLTW22;
BT24], which give the cleanest versions of this theory, but again I shamelessly take
expositional choices from other writing I did on this topic [Tan22; Tan23].

For these notes, I’ll assume comfort with quantum computing basics (gates, circuits,
measurement), linear algebra (unitary matrices, tensor products, singular value decompo-
sition and eigendecomposition), and probability.

1

Contents
0 Preface 1

1 Introducing the block-encoding 3
1.1 Block-encodings . 4
1.2 Extensibility properties of block-encodings 5
1.3 The “fundamental theorem” of block-encodings 7
1.4 Wielding the block-encoding . 8

Problem Set 1: The block-encoding 10

2 Proving QSVT 11
2.1 Quantum signal processing (QSP) . 11
2.2 Lifting with the CS decomposition . 14
2.3 Proving QSVT . 16

Problem Set 2: The QSVT 19

3 Approximating many things by polynomials 20
3.1 Chebyshev polynomials and properties 20
3.2 Approximating functions from Chebyshev series 22
3.3 Lower bounds on polynomial approximation 25

Problem Set 3: Polynomial approximation 27

4 Introducing quantum-inspired linear algebra 28
4.1 A vignette: The swap test, and what’s in an access model 29
4.2 Extensibility properties . 32

Problem Set 4: Dequantizing QSVT 35

5 Quantum-inspired algorithms: sketching and beyond 36
5.1 Another vignette: Tools for the matrix-vector product 36
5.2 Oversampling and query access to matrices 37
5.3 Sketching to estimate matrix products 38
5.4 General singular value transformation . 40

Problem Set 5: The power of classical 42

2

1 Introducing the block-encoding
First, some background behind the framework I’m about to introduce. Quantum computers
were first envisioned for use in efficiently simulating quantum systems. One commonly
studied instance of this task is Hamiltonian simulation, i.e. simulation of the dynamics of
a closed quantum system.

Problem (Hamiltonian simulation). Let H be a Hamiltonian made up of m terms,
meaning that

H =
m∑
a=1

λaEa where Ea is a tensor product of single-qubit unitary matrices.

Given a quantum state |ψ⟩ and a time t ∈ R, produce a state close to e−iHt |ψ⟩. Or,
slightly stronger: implement a unitary U close to e−iHt, so that ∥U − eiHt∥ ≤ ε, where ∥·∥
denotes operator norm.1

We describe H as a sum of individual interaction terms Ea, where λa dictates the
strength of the interaction. These Ea’s need not be as we describe them, but they are
generally simple operators encoding basic kinds of interactions between qubits. Then,
e−iHt |ψ⟩ is the state of the system after evolving according to the Schrödinger differential
equation ∂t |ψ(t)⟩ = −iH |ψ(t)⟩ with initial state |ψ(0)⟩ = |ψ⟩, for time t.

Original Hamiltonian simulation algorithms [Llo96] proceeded by using Trotter ap-
proximations: since the Ea’s are “simple”, we would be happy if we can break up the
exponential into pieces, each with only one term. We can be happy, since for r large
enough,

e−iHt ≈ (e−iE1t/re−iE2t/r · · · e−iEmt/r)r, (1)

This method for Hamiltonian simulation is simple and easy-to-implement. However,
it is far from optimal. For the moment, let’s ignore dependence on log(d), m, and t
for the moment2 and focus on error ε. The approximation quality of Trotter is poor,
since r = poly(1/ε) is needed for the Trotter error to be ε; so, quantum algorithms
with this strategy only get poly(1/ε) gate complexity. More refined “product formulas”
than Eq. (1) are able to get sub-polynomial dependence on error [CW12]. However,
the optimal algorithms for Hamiltonian simulation, which get log(1/ε)/ log log(1/ε) gate
complexity [BCCKS17; LC17; LC19], use an entirely different technique. This technique
developed into the framework I will present now [GSLW19].

This framework proceeds by:

1. Defining a type of quantum circuit called a “block-encoding”;

2. Showing that, given λa and Ea, we can construct an efficient block-encoding of H,
up to a scaling constant;

1And ∥·∥ denotes Euclidean norm when applied to a vector.
2What happens with these parameters is a story for another time. In short, it heavily depends on the

Hamiltonian whether the algorithms have gate complexity log(d)mt or something more like (log(d)t)1+o(1).
Product formulas can typically get the right dependence on these parameters [CSTWZ21; CS19]. But for
the sort of “physical” Hamiltonians that I’m familiar with, the algorithms with best dependence on all
parameters (including ε) use the techniques here, along with exploiting some locality properties about
the Hamiltonian [HHKL21].

3

3. Showing that we can get a block-encoding of (an approximation of) e−iHt with few
uses of the block-encoding to H;

4. Using our new block-encoding to apply the approximation of e−iHt to a state.

1.1 Block-encodings

We begin with the block-encoding, which is a way to access a matrix via a quantum
circuit.

Definition 1.1 (Block-encoding, variant of [GSLW19, Definition 43], [Ral20, Definition
1]). Given A ∈ Cr×c, we say U ∈ Cd×d is a Q-block encoding of A if U is implementable
with O(Q) gates and

B†
L,1UBR,1 = A, (2)

where BL,1 ∈ Cd×r, BR,1 ∈ Cd×c are the first r and c columns of the identity matrix.
Equivalently,

U =

(
A ·
· ·

)
, (3)

where · denotes unspecified block matrices. We denote ΠL = BL,1B
†
L,1, ΠR = BR,1B

†
R,1 to

be the corresponding projections onto the spans of BL,1 and BR,1, respectively.

We’ll often consider d, r, and c as powers of two so that we can write everything in
terms of qubits. The equation in Definition 1.1 then becomes

(⟨0|⊗aL ⊗ I)U(|0⟩⊗aR ⊗ I) = A (4)

for aL = log2(d/r) and aR = log2(d/c).
Remark 1.2 (Other definitions of the block-encoding). In the literature, you’ll often
see block-encodings defined with an accuracy parameter ε and a rescaling parameter α,
allowing for approximation:

∥A− αB†
L,1UBR,1∥ ≤ ε.

In these lecture notes, instead of saying we have an ε-accurate α-rescaled block-encoding
of A, we’ll say that we have a block-encoding of Ã/α where Ã satisfies ∥Ã−A∥ ≤ ε. This
choice to not incorporate error into definition of block-encoding makes proving things
easier in my experience. Definitions sometimes also allow BL,1 and BR,1 to be arbitrary
isometries [GSLW19, Definition 11]; this is not any more general, since then B†

LUBR is a
block-encoding in the sense above, where BL, BR ∈ Cd×d are unitary completions of BL,1

and BR,1.
Remark 1.3 (Normalization). Because block-encoded matrices must be a sub-matrix of a
unitary, it’s only possible3 to produce block-encodings of matrices with bounded operator
norm, ∥A∥ ≤ 1. The actual scaling of A is important: it is generally easier to get a
block-encoding of matrices with smaller operator norm, so one often ends up working
with block-encodings of A/α for some large α; but α then appears in the running time,
meaning that smaller matrices produce slower algorithms. The mechanics of this aren’t
particularly obvious, but keep in mind that scale is an essential component to manage
when working with block-encodings.

3In a later problem set, you’ll see that is also a sufficient condition—any matrix with bounded operator
norm can be the submatrix of a unitary matrix.

4

We can view the block-encoding as a generalization of a unitary quantum circuit.

Lemma 1.4. A quantum circuit implementing the unitary U with Q gates is a Q-block
encoding of U .

In the way that we apply a circuit implementing U to perform the map |ψ⟩ 7→ U |ψ⟩,
a block-encoding of A can be used to perform the map |ψ⟩ 7→ A |ψ⟩, with some chance of
failure. This allows us to perform more general types of linear algebraic operations than
what purely unitary circuits offer.

Lemma 1.5. Given U ∈ Cd×d, a Q-block encoding of A ∈ Cr×c, and a state |ψ⟩ ∈ Cc,
there is a quantum circuit with O(Q) gates that produces the state A|ψ⟩

∥A|ψ⟩∥ with probability
∥A |ψ⟩∥2.

|0⟩⊗a
U

|ψ⟩

Figure 1: A basic block-encoding circuit. If U is a block-encoding of the matrix A ∈ Cr×r,
then provided the outcome of the measurement on the first wire is |0⟩⊗a, then the output
of the circuit is A |ψ⟩.

Proof. The circuit is shown in Fig. 1: we can take the state |ψ⟩ and add aR qubits
initialized to |0⟩. Then, we apply the block-encoding U and measure the first aL qubits.
If they all have outcome 0, then by Eq. (4), the resulting state is A |ψ⟩. This occurs with
probability ∥A |ψ⟩∥2.

1.2 Extensibility properties of block-encodings

The question now becomes: when can we produce an efficient block-encoding of a matrix?
In fact, we can reduce Hamiltonian simulation to such a problem: a tensor product of
single-qubit unitary matrices is implementable by a layer of single-qubit gates, and so has a
log(d)-block encoding by Lemma 1.4. So, we have block encodings of the terms {Ea}a∈[m]

for the Hamiltonian H =
∑m

a=1 λaEa; can we get a block-encoding of (an approximation
of) e−iHt?

Block-encodings enjoy several extensibility properties : that is, given block-encodings
of A and B, we can get block-encodings of AB and c0A + c1B, whenever (1) A and B
have dimensions such that these expressions make sense and (2) the scale of c0 and c1 is
sufficiently small. This will allow us to get a block-encoding of H/α for some rescaling
constant α.

Lemma 1.6 (Multiplying block-encodings). Let U and V be QU - and QV -block-encodings
of A ∈ Cr×s and B ∈ Cs×t, respectively. Then we can construct a (QU + QV)-block
encoding of AB.

Proof. The circuit implementing AB is shown in Fig. 2. We can see that this is a
block-encoding of AB by inspection, as this is a composition of two of the circuits in
Fig. 1.

5

|0⟩⊗aU

U|0⟩⊗aV
V

//

|ψ⟩

Figure 2: If U is a block-encoding of A and V is a block-encoding of B, then this circuit
is a block-encoding of AB, shown being applied to input |ψ⟩. Here, aU and aV are the
padding needed for the respective block-encodings.

We can construct block-encodings of linear combinations of block-encodings using the
Linear Combination of Unitaries (LCU) algorithm.

Lemma 1.7 (Summing block-encodings). Let U (i) be a Q(i)-block-encoding of A(i) ∈ Cr×c

for all i = 0, . . . , k − 1. Then we can construct a (k +
∑k−1

i=0 Q
(i))-block encoding of∑

αiU
(i), for αi ∈ C such that

∑
|αi| ≤ 1.

|0⟩ V † • V

|0⟩⊗a
U (0) U (1)

|ψ⟩

Figure 3: If U (1) and U (2) are block-encodings of A(1) and A(2), then this circuit is a
block-encoding of |V0,0|2A(0) + |V0,1|2A(1), shown being applied to input |ψ⟩. Here, the
gate blocks containing U (0) and U (1) denote conditioning on |0⟩ and conditioning on |1⟩.

Proof. First, consider taking the linear combination of k = 2 block-encodings. The
circuit implementing a linear combination is shown in Fig. 3. The controlled-U (0) and
controlled-U (1) apply the unitary(

U (0)

I

)(
I

U (1)

)
=

(
U (0)

U (1)

)
︸ ︷︷ ︸

(|0⟩⟨0|)⊗U(0)+(|1⟩⟨1|)⊗U(1)

(5)

So, the full circuit is performing(
V0,0I V0,1I
V1,0I V1,1I

)†(
U (0)

U (1)

)(
V0,0I V0,1I
V1,0I V1,1I

)
︸ ︷︷ ︸

(V †|0⟩⟨0|V)⊗U(0)+(V †|1⟩⟨1|V)⊗U(1).

(6)

The top-right corner of this matrix, which is where the block-encoding should be, equals

|V0,0|2U (0) + |V1,0|2U (1).

So, for any non-negative real α0, α1 summing to one, we can find some one-qubit unitary
V whose first column is

√
α0,
√
α1, giving the desired block-encoding. If, say, α0 was

negative, we could use the circuit for |α0|, but use a controlled unitary of −U (0) instead
of U (0) to negate it in the block-encoding.

6

The general version is of the following form. First, if U is a block-encoding of A then
so is I ⊗ U , so without loss we can pad the dimension until all U (i)’s are all the same size,
d× d. Second, without loss we can pad our linear combination until k is a power of two
by adding U (i) = I and αi = 0 to the linear combination. Let V ∈ Ck×k be a unitary such
that

V |0⟩ =
k∑
i=0

√
|αi| |i⟩

and let U ∈ Ckd×kd be the unitary
k−1∑
i=0

(|k⟩ ⟨k|)⊗ (
αi
|αi|

)U (i)).

Then (V † ⊗ I)U(V ⊗ I) is a block-encoding of
∑
αiU

(i). The cost of applying V is O(k),
and assuming that the cost of applying the controlled version of U (i) is only a constant
factor larger than the cost of applying U (i) itself, the cost of U is O(k +

∑
iQ

(i)).

We will need a final assertion about block-encodings. So far, we haven’t specified
a particular gate model for our quantum circuit; if you like, it’ll be easiest to consider
quantum circuits with arbitrary one- and two-qubit gates. Whatever gate model is used,
we need that the number of gates to apply a circuit is equal to the number of gates to
apply its inverse (up to constant factors).

Lemma 1.8 (Taking the conjugate transpose of a block-encoding). If U is a Q-block
encoding of A, then U † is a Q-block encoding of A†.

1.3 The “fundamental theorem” of block-encodings

These extensibility theorems are powerful: one might notice that we can combine them
to get block-encodings of polynomials of A. “Polynomials of A” has a clear meaning
when A is Hermitian: for a function f : R→ C, f(A) is defined to be the function that
applies f to the eigenvalues of A: for A =

∑
λiu

(i)(u(i))† the unitary eigendecomposition
of A, f(A) =

∑
f(λi)u

(i)(u(i))†. But for general A, we need to be more careful. Now, we
define the notion of applying a scalar function to a matrix, referred to in this literature as
‘singular value transformation’.

Definition 1.9 (Singular value transformation, [GSLW19, Definition 16]). Let f : R→ C
be even or odd,4 and let A ∈ Cr×c have SVD A =

∑
i∈[min(r,c)] σiuiv

†
i . Then we define

f (SV)(A) =

{∑
i∈[min(r,c)] f(σi)uiv

†
i f is odd∑

i∈[c] f(σi)viv
†
i f is even

where σi is defined to be zero for i > min(r, c).

When f(x) = p(x) is an even or odd polynomial, p(SV)(A) can be written as a
polynomial in the expected way, e.g. if p(x) = x2 + 1, p(SV)(A) = A†A + I and if
p(x) = x3 + x, p(SV)(A) = AA†A+ A. Notice that the monomials alternate A and A† so
that the dimensions align.

Now, we can consider when it’s possible to convert a block-encoding of A to a block-
encoding of f (SV)(A), focusing on polynomials in particular.

4A function is even if f(x) = f(−x) and odd if f(x) = −f(−x).

7

Definition 1.10 (Achievable polynomial). A degree-n polynomial p ∈ C[x] is “achievable”
if there is an explicit way to create a block-encoding of p(SV)(A) from a block-encoding of
A.

This definition isn’t entirely formal (we technically need some efficiency guarantee on
the block-encoding of p(SV)(A)), but will be useful language for us going forward. The
extensibility properties directly show that some polynomials are achievable.

Corollary 1.11 (Corollary of the extensibility properties). Polynomials of the form
p(x) =

∑n
k=0 akx

k are achievable, provided that
∑
|ak| ≤ 1 and p is odd or even.

A proof of this is deferred to the problem set. However, this is a very small class of
polynomials: again see the problem set for an example of a limitation of this class of
polynomials.

The main result of the block-encoding framework is that all bounded polynomials
with real coefficients are achievable; this result gives QSVT, quantum singular value
transformation, its name.

Theorem 1.12 (Taking polynomials of block-encodings [GSLW19, Theorem 17 and
Corollary 18]). If a polynomial with real coefficients p ∈ R[x] is even or odd and satisfies
|p(x)| ≤ 1 for all x ∈ [−1, 1], then it is achievable.

This result is about the best we could hope for. The constraint that p(x) is bounded
by 1 is necessary, since the QSVT algorithm converts a block-encoding of A to a block-
encoding of p(SV)(A) in a black-box way, i.e. without looking at A. But if some p(x) had
magnitude larger than one, then p(SV)(A) can have norm greater than one, and therefore
never be in a block-encoding. The even/odd constraint is not very important, since the
polynomial is only ever applied to singular values, which are non-negative. The only
limitation of this result is that it only applies to polynomials with real coefficients, but I
don’t know of situations where this is of concern.

We’ll prove Theorem 1.12 in the next lecture. First, we see how to apply it.

1.4 Wielding the block-encoding

Hamiltonian simulation gives a nice view into how to use block-encodings and QSVT. As we
discussed before, we can construct a m log(d)-block-encoding of H/(

∑
|λi|). Without loss

of generality, we can rescale H ← H/(
∑
|λi|) and t← t

∑
|λi| so that our block-encoding

is of H. Our goal is to get an (approximate) block-encoding of f(H), where

f(x) = exp(−ixt) = cos(tx)− i sin(tx). (7)

Since cos(tx) and sin(tx) are bounded even and odd functions, respectively, we can find
good polynomial approximations of them. (We will see how to do this in lecture 3.) That
is, we can find c and s such that, for all x ∈ [−1, 1],

|c(x)− cos(tx)| ≤ ε |s(x)− sin(tx)| ≤ ε

By Theorem 1.12, we can get block-encodings of c(SV)(H) and s(SV)(H). By Lemma 1.7,
we can get a block-encoding of 1

2
(c(SV)(H) − is(SV)(H)) ≈ 1

2
e−iHt. This is enough if we

wish to apply it to an input state |ψ⟩, but to decrease the failure probability we can
remove the 1

2
through oblivious amplitude amplification, which can be done with QSVT.

8

I haven’t yet discussed gate complexity or the error analysis, but we will see that
the running time of the whole algorithm is dictated by how small the degree can be of
polynomials approximating cos(tx) and sin(tx). Up to constant factors of wiggle room in
the parameters, the number of times one needs to apply the block-encoding for H is equal
to this degree, and we get optimal algorithms for Hamiltonian simulation by choosing the
optimal polynomial approximations.

9

Problem Set 1: The block-encoding
Problem 1.1 (Taking tensor products of block-encodings). Let U and V be Q-block
encodings of A and B, respectively. Show how to get a Q-block-encoding of A⊗B.

Problem 1.2 (Extensibility properties). Prove Corollary 1.11 of the lecture notes. Specif-
ically, show that the two extensibility properties allow us to convert a Q-block encoding
of A to a nQ-block encoding of p(SV)(A).

Problem 1.3 (Extensibility properties do not suffice). Let p(x) =
∑n

k=0 akx
k be a

polynomial whose coefficients satisfy
∑
|ak| ≤ 1. Show that p(x) cannot approximate

sin(100x) for any choice of n. That is, show that there is some x ∈ [−1, 1] such that

|p(x)− sin(100x)| ≥ 0.01.

We will see in Lecture 3 that sin(100x) can in fact be approximated by a low-degree
polynomial; it’s just that this class of polynomials doesn’t suffice.

Problem 1.4 (Oblivious amplitude amplification). QSVT is a unifying technique which
includes many major quantum algorithms, including amplitude amplification [MRTC21].
In this problem, we show that Oblivious Amplitude Amplification (OAA), as described in
[BCCKS17, Lemma 3.6], can be written in our block-encoding framework.

Identify the block-encoding within the aforementioned unitary. What polynomial
would effect the same transformation as described in [BCCKS17, Lemma 3.6]?

Remark 1.13. See [Ral20] for more information on how to get block-encodings of density
matrices and observables, and how to use this to estimate physical quantities like expecta-
tions of Gibbs states. See [BCCKS17] for further discussion of Hamiltonian simulation,
placing it in the context of the more general problem of understanding the “fractional query
model”, “discrete query model”, and “continuous query model”. See [LC19] (the original
paper) or [GSLW19] for a more thorough explanation of the Hamiltonian simulation
algorithm.

10

2 Proving QSVT
Let’s start by recalling the definition of a block-encoding from the previous lecture.

Definition 1.1 (Block-encoding, variant of [GSLW19, Definition 43], [Ral20, Definition
1]). Given A ∈ Cr×c, we say U ∈ Cd×d is a Q-block encoding of A if U is implementable
with O(Q) gates and

B†
L,1UBR,1 = A, (2)

where BL,1 ∈ Cd×r, BR,1 ∈ Cd×c are the first r and c columns of the identity matrix.
Equivalently,

U =

(
A ·
· ·

)
, (3)

where · denotes unspecified block matrices. We denote ΠL = BL,1B
†
L,1, ΠR = BR,1B

†
R,1 to

be the corresponding projections onto the spans of BL,1 and BR,1, respectively.

In this lecture, we will prove Theorem 1.12, which states that all bounded polynomials
with real coefficients are achievable, in the sense defined in Definition 1.10. The full
statement, including quantitative bounds, are as follows.

Theorem 2.1 ([GSLW19, Theorem 17 and Corollary 18]). If a degree-n polynomial with
real coefficients p ∈ R[x] is even or odd and satisfies |p(x)| ≤ 1 for all x ∈ [−1, 1], then we
can use a Q-block encoding of A to construct a n(log(d) +Q)-block encoding of p(SV)(A).

Our proof proceeds as follows. We begin with the case where A is a scalar and
U ∈ C2×2; this is known as quantum signal processing. Then, we show that the circuit
used for the scalar case “lifts” to the matrix case; to do this, we use an argument with
block matrices.

2.1 Quantum signal processing (QSP)

The idea of QSP is that we can perform a known function on an unknown (parametrized)
operator by interleaving the unknown operator with rotations.

Definition 2.2 (Quantum signal processing). For a sequence of phase factors Φ = {ϕj} ∈
Rn+1, it defines a quantum signal processing circuit5

QSP(Φ, x) :=

(
n∏
j=1

(
eiϕj 0
0 e−iϕj

)
︸ ︷︷ ︸

eiϕjσz

(
x

√
1− x2√

1− x2 −x

)
︸ ︷︷ ︸

=:R(x)

)(
eiϕ0 0
0 e−iϕ0

)
. (8)

Here, the product goes from n on the left-hand side to 1 on the right-hand side. The
matrix σz = (1

−1) is the Pauli Z matrix.
5We define QSP with the reflection operation R(x); a different convention is to use the rotation

ei arccos(x)σx = (x i
√
1−x2

i
√
1−x2 x

), denoted W (x) in [GSLW19]. These two types of circuits are equivalent
up to a shift in phase factors [MRTC21, Appendix A.2]. See the problem set for more discussion of this.
Using W (x) is perhaps more natural, since then this corresponds to alternating rotations in the σX and
σZ basis.

11

Definition 2.3 (QSP-achievable polynomial [GSLW19, Corollary 8]). We say that a
polynomial p(x) ∈ C[x] is QSP-achievable if there is a sequence of phase factors Φ =
{ϕj} ∈ Rn+1 such that

QSP(Φ, x) =

(
p(x) ·
· ·

)
. (9)

To find out what polynomials are QSP-achievable, we first take a look at what the
form of QSP is. It turns out that we can express it as a recurrence of polynomials.

Lemma 2.4 (QSP as a recurrence). For some phase factors Φ = {ϕj} ∈ Rn+1,

QSP({ϕj}0≤j≤k, x) =
(

pk(x) qk(−x)
√
1− x2

qk(x)
√
1− x2 pk(−x)

)
, (10)

where pk(x) and qk(x) satisfy the following recurrence relation:

pk+1(x) = eiϕk+1(xpk(x) + (1− x2)qk(x)); (11)
qk+1(x) = e−iϕk+1(pk(x)− xqk(x)). (12)

For the base case, p0(x) = eiϕ0 and q0(x) = 0.

Proof. The base case is because

QSP({ϕ0}, x) =
(
eiϕ0

e−iϕ0

)
(13)

For the inductive case, we just do the annoying computation.

QSP({ϕj}0≤j≤k+1, x) (14)
= eiϕk+1σzR(x) ·QSP({ϕj}0≤j≤k, x) (15)

=

(
eiϕk+1x eiϕk+1

√
1− x2

e−iϕk+1
√
1− x2 −e−iϕk+1x

)(
pk(x) qk(−x)

√
1− x2

qk(x)
√
1− x2 pk(−x)

)
(16)

=

(
eiϕk+1(xpk(x) + (1− x2)qk(x)) eiϕk+1(pk(−x) + xqk(−x))

√
1− x2

e−iϕk+1(pk(x)− xqk(x))
√
1− x2 e−iϕk+1(−xpk(−x) + (1− x2)qk(−x))

)
(17)

=

(
pk+1(x) qk+1(−x)

√
1− x2

qk+1(x)
√
1− x2 pk+1(−x)

)
(18)

Feel free to stare at the last line for a little bit to confirm that the entries indeed all match
up to what I claim them to be.

With this recurrence, we can give a characterization of which polynomials are QSP-
achievable.

Theorem 2.5 ([GSLW19, Theorem 3]). A degree-n polynomial p(x) ∈ C[x] is QSP-
achievable with some Φ ∈ Rn+1 if and only if there is some polynomial q(x) such that:

(a) q has degree ≤ n− 1;

(b) (p, q) are (even, odd) or (odd, even);

(c) |p(x)|2 + (1− x2)|q(x)|2 = 1 for all x.

12

Proof. First, we consider the “only if” direction. Suppose p(x) is QSP-achievable with the
phase factors Φ ∈ Rn+1. Then, by Lemma 2.4, there is some q(x) such that

QSP(Φ, x) =

(
p(x) q(−x)

√
1− x2

q(x)
√
1− x2 p(−x)

)
,

derived from the recurrence described in that lemma. From this recurrence, we can verify
that at all times, conditions (a) and (b) are satisfied. Finally, condition (c) is always
satisfied because QSP(Φ, x) is a product of unitary matrices, and so is unitary: the
first column having norm one is equivalent to |p(x)|2 + (1− x2)|q(x)|2 = p(x)p(x) + (1−
x2)q(x)q(x) = 1, and this argument works for every x ∈ [−1, 1]. Because it holds for
infinitely many x, the equality holds as polynomials.

Second, we consider the “if” direction. Suppose we have some p(x) of degree n and
q(x) satisfying (a), (b), and (c). We want to construct phase factors that implement p(x).
We proceed by induction: when n = 0, this means that p(x) is scalar and q(x) has degree
≤ −1 (meaning it must be zero). Thus, p(x) ≡ eiϕ for some ϕ; we can implement this
with Φ = {ϕ}. For the inductive step, consider p(x) of degree n + 1. If we could show
that there exists some φ such that

(eiφσzR(x))†
(

p(x) q(−x)
√
1− x2

q(x)
√
1− x2 p(−x)

)
=

(
p↓(x) q↓(−x)

√
1− x2

q↓(x)
√
1− x2 p↓(−x)

)
(19)

for p↓, q↓ some even or odd polynomials with degree one lower than p and q, then we would
be done. By assumption, the matrices on the left-hand side of Eq. (19) are unitary, so the
right-hand side matrix is also unitary. Thus, p↓ and q↓ satisfy all the properties of the
induction hypothesis, and there are phase factors {ϕ0, . . . , ϕn} ∈ Rn+1 giving the equality

(eiφσzR(x))†
(

p(x) q(−x)
√
1− x2

q(x)
√
1− x2 p(−x)

)
= QSP({ϕ0, . . . , ϕn}, x). (20)(

p(x) q(−x)
√
1− x2

q(x)
√
1− x2 p(−x)

)
= QSP({ϕ0, . . . , ϕn, φ}, x) (21)

So it comes down to finding the right value of φ that could remove a degree from p and q
in Eq. (19). By properties (a) and (b), we can write

p(x) = an+1x
n+1 + an−1x

n−1 + · · · (22)
q(x) = bnx

n + an−2x
n−2 + · · · (23)

The condition (c) implies that |an+1| = |bn|. Now, let’s do the annoying matrix calculation
we were putting off. Since R(x) is its own inverse, (eiφσzR(x))† = R(x)e−iφσz , so

(eiφσzR(x))†
(

p(x) q(−x)
√
1− x2

q(x)
√
1− x2 p(−x)

)
(24)

=

(
e−iφx eiφ

√
1− x2

e−iφ
√
1− x2 −eiφx

)(
p(x) q(−x)

√
1− x2

q(x)
√
1− x2 p(−x)

)
(25)

=

(
e−iφp(x) + eiφ(1− x2)q(x) (eiφp(−x) + e−iφxq(−x))

√
1− x2

(e−iφp(x)− eiφxq(x))
√
1− x2 −eiφxp(−x) + e−iφ(1− x2)q(−x)

)
(26)

So, we need the following polynomials to have lower degree:

p↓(x) = e−iφp(x) + eiφ(1− x2)q(x) (27)
q↓(x) = e−iφp(x)− eiφxq(x) (28)

13

The “leading” coefficient of xn+1 for p↓ and xn for q↓ are the same: e−iφan+1 − eiφbn. If we
choose φ such that eiφ =

√
an+1/bn, then this coefficient is 0, and so the degrees of p↓

and q↓ are ≤ n− 1 and ≤ n− 2, as desired.

The above characterization of when a polynomial is QSP-achievable is still quite
difficult to understand. With some more work, we can arrive at a clearer understanding
of QSP-achievability, if we give up the imaginary degree of freedom in our polynomials.

Theorem 2.6 ([GSLW19, Theorem 5, Lemma 6]). Let pRe(x) be a real-valued polynomial
with p of degree n. Then there exists p ∈ C[x] such that p is QSP-achievable and
pRe = Re(p) if and only if

(a) pRe is even or odd;

(b) |pRe(x)| ≤ 1 for x ∈ [−1, 1].

What’s happening here is that if we have a real polynomial where the “unit norm”
constraint is merely an inequality, then we can add imaginary components to make it an
equality, so that by Theorem 2.5 these supplemented polynomials are achievable. This is
the only part of the QSVT proof which I’ll punt on: see [GSLW19] or [TT24, Appendix
A] for a proof, which involves manipulating roots of these polynomials.

From this, we can get our desired block-encodings, at least in this scalar case. For
some even or odd p(x) ∈ R[x], by Theorem 2.6, we can find a phase sequence Φ such
that QSP(Φ, x) has p(x) + ipIm(x) in the top-left corner for some pIm(x) ∈ R[x]. Then
QSP(−Φ, x) has p(x)− ipIm(x) in its top-left corner. So, using LCU, we can average these
two to get a block-encoding of p(x). This gives a proof of Theorem 2.1 in the scalar case.

2.2 Lifting with the CS decomposition

To generalize to higher dimensions, we need a new version of QSP (Definition 2.2). In
this discussion, we follow the exposition of [TT24].

Definition 2.7 ([GSLW19, Definition 15]). The phased alternating sequence associated
with a block-encoding U (following notation of Definition 1.1) and Φ = {ϕj}0≤j≤n ∈ Rn+1

is

UΦ :=

{
eiϕn(2ΠL−I)Ueiϕn−1(2ΠR−I)∏n−3

2
j=0 U

†eiϕ2j+1(2ΠL−I)Ueiϕ2j(2ΠR−I) if n is odd, and

eiϕn(2ΠR−I)∏n−2
2

j=0 U
†eiϕ2j+1(2ΠL−I)Ueiϕ2j(2ΠR−I) if n is even.

Remark 2.8. The phased alternating sequence UΦ can be seen as a generalization of the
quantum signal processing circuit QSP(Φ, x). When d = 2 and r = c = 1, 2ΠL − I =
2ΠR − I = σz, so thinking about R(x) as a block-encoding of x,

QSP(Φ, x) = [R(x)]Φ where R(x) =
(

x
√
1− x2√

1− x2 −x

)
.

Theorem 2.9 ([GSLW19, Theorem 17]). Let unitary U ∈ Cd×d be a Q-block encoding
of A. Suppose Φ = {ϕj}0≤j≤n ∈ Rn+1 is such that QSP(Φ, x) computes the degree-n
polynomial p(x) ∈ C[x], as in Definition 2.2. Then, UΦ is a n(log(d) +Q)-block encoding
of p(SV)(A).

14

This theorem implies Theorem 2.1: by Theorem 2.6, for any real polynomial p, there
is a polynomial q which is QSP-achievable and whose real part is p. Our theorem shows
that q is achievable, and therefore its complex conjugate q is as well; therefore, q+q

2
= p is

achievable. This does not inflate the cost of the block-encoding by more than a constant.
Now, we prove Theorem 2.9. We will see in the problem set that the rotations in UΦ can

be done in O(log(d)) gates, and so the gate complexity of UΦ is indeed O(n(log(d) +Q)).
All that remains is to show that it is indeed a block-encoding of p(SV)(A).

We begin our proof by introducing the CS decomposition (CSD), a decomposition of a
partitioned unitary matrix, following Paige and Wei [PW94]. The main idea of the CSD
is that when a unitary matrix U is split into two-by-two blocks Uij for i, j ∈ {1, 2}, one
can produce “simultaneous singular value decompositions (SVDs)” of the blocks, of the
form Uij = ViDijW

†
j .6

Theorem 2.10 (The cosine-sine decomposition [TT24, Theorem 1]). Let U ∈ Cd×d be a
unitary matrix, partitioned into blocks of size {r1, r2} × {c1, c2}:

U =

(
U11 U12

U21 U22

)
, where Uij ∈ Cri×cj for i, j ∈ {1, 2}.

Then, there exists unitary Vi ∈ Cri×ri and Wj ∈ Ccj×cj for i, j ∈ {1, 2} such that(
U11 U12

U21 U22

)
=

(
V1

V2

)(
D11 D12

D21 D22

)(
W1

W2

)†

,

where blanks represent zero matrices and Dij ∈ Rri×cj are diagonal matrices, possibly
padded with zero rows or columns. Specifically, we can write

D :=

(
D11 D12

D21 D22

)
=

0

C
I

I
S

0
I

S
0

0
−C

−I

 (29)

where I, C, and S blocks are square diagonal matrices where C and S have entries in
(0, 1) on the diagonal, and 0 blocks may be rectangular.7 Because D is unitary, we also
have C2 + S2 = I.

Remark 2.11. The form of D naturally induces decompositions Cd = X0 ⊕ XC ⊕ X1 and
Cd = Y0⊕ YC ⊕ Y1 into direct sums of three spaces. Hence, D : Cd → Cd can be seen as a
map D : X0 ⊕XC ⊕X1 → Y0 ⊕ YC ⊕ Y1, such that D is a direct sum of three linear maps.

0
C

I

I
S

0
I

S
0

0
−C

−I

 =

(
0 I
I 0

)
︸ ︷︷ ︸
X0→Y0

⊕
(
C S
S −C

)
︸ ︷︷ ︸

XC→YC

⊕
(
I 0
0 −I

)
︸ ︷︷ ︸

X1→Y1

.

6In fact, there is some sense in which the SVD and the CSD are special cases of the same object, a
generalized Cartan decomposition. We recommend the survey by Edelman and Jeong for readers curious
about this connection [EJ23].

7Blocks may be non-existent. The I blocks may not necessarily be the same size, but C and S are the
same size.

15

The key resulting intuition for QSVT is that, supposing everything is square, these blocks
can be further decomposed into 2× 2 blocks of the reflection matrix from quantum signal
processing, (

λi
√
1− λ2i√

1− λ2i −λi

)
,

where {λi} are the singular values of U11.

2.3 Proving QSVT

We now apply the machinery of the two previous sections to prove Theorem 2.1. We
begin with some helpful notation in this special case, following the partitioning given by
Theorem 2.10.

Definition 2.12 (Variant of [GSLW19, Definition 12]). Let U ∈ Cd×d be a Q-block
encoding of A ∈ Cr×c where BL,1 and BR,1 are the first r and c columns of the identity,
respectively, as in Definition 1.1. By Theorem 2.10, there is a CS decomposition compatible
with the partitioning of U :

U =

(
A U12

U21 U22

)
=

(
V1

V2

)
︸ ︷︷ ︸

V

(
D11 D12

D21 D22

)
︸ ︷︷ ︸

D

(
W1

W2

)†

︸ ︷︷ ︸
W †

.

In Definition 2.12, we applied Theorem 2.10 to obtain an SVD of A = V1D11W1 that
we have extended to the d-dimensional U . Recall also that we defined ΠL and ΠR to be
the identity but with all but the first r and c 1’s set to 0, respectively.

Our proof of Theorem 2.9 falls out of this decomposition: with it, we can reduce to a
diagonal case, which mirrors QSP in the desired way.

Proof of Theorem 2.9. We recall the definition of UΦ:

UΦ =

{
eiϕn(2ΠL−I)Ueiϕn−1(2ΠR−I)∏n−3

2
j=0 U

†eiϕ2j+1(2ΠL−I)Ueiϕ2j(2ΠR−I) if n is odd, and

eiϕn(2ΠR−I)∏n−2
2

j=0 U
†eiϕ2j+1(2ΠL−I)Ueiϕ2j(2ΠR−I) if n is even.

We observe that this SVD commutes appropriately with exponentiated reflections respect-
ing the partition.

eiϕ(2ΠL−I) =

(
eiϕI

e−iϕI

)
, eiϕ(2ΠR−I) =

(
eiϕI

e−iϕI

)
,

with appropriate block sizes, and(
eiϕI

e−iϕI

)(
V1

V2

)
=

(
V1

V2

)(
eiϕI

e−iϕI

)
,(

W1

W2

)(
eiϕI

e−iϕI

)
=

(
eiϕI

e−iϕI

)(
W1

W2

)
.

So, we continue:

=

{
V eiϕn(2ΠL−I)Deiϕn−1(2ΠR−I)(

∏n−3
2

j=0 D
†eiϕ2j+1(2ΠL−I)Deiϕ2j(2ΠR−I))W † if n is odd, and

W (eiϕn(2ΠR−I)∏n−2
2

j=0 D
†eiϕ2j+1(2ΠL−I)Deiϕ2j(2ΠR−I))W † if n is even.

=

{
V DΦW

† if n is odd, and
WDΦW

† if n is even.
(30)

16

This reduces the problem to computing DΦ. Recall from (29) that the structure of D is

(
D11 D12

D21 D22

)
=

0

C
I

I
S

0
I

S
0

0
−C

−I

 =

(
0 I
I 0

)
⊕
(
C S
S −C

)
⊕
(
I 0
0 −I

)
.

Similarly, where the blocks below denote the same direct sum decomposition above, for
ϕ ∈ R,

eiϕ(2ΠL−I) =

(
eiϕI

e−iϕI

)
=

(
eiϕI

e−iϕI

)
⊕
(
eiϕI

e−iϕI

)
⊕
(
eiϕI

e−iϕI

)
,

eiϕ(2ΠR−I) =

(
eiϕI

e−iϕI

)
=

(
eiϕI

e−iϕI

)
⊕
(
eiϕI

e−iϕI

)
⊕
(
eiϕI

e−iϕI

)
.

Leveraging this direct sum decomposition of D, we can reduce our calculation to computing
the alternating sequence for each block, yielding

DΦ =

(
0 I
I 0

)
Φ

⊕
(
C S
S −C

)
Φ

⊕
(
I 0
0 −I

)
Φ

=

(
0 ·
· ·

)
⊕

(
p(SV)(C) ·
· ·

)
⊕

(
p(1)I ·
· ·

)
if n is odd, and(

p(0)I ·
· ·

)
⊕

(
p(SV)(C) ·
· ·

)
⊕

(
p(1)I ·
· ·

)
if n is even.

This last equality is a crucial but elementary calculation. The full derivation is given
in [TT24], but the main point is that these cases are simple enough that they can be
computed directly. The intuition behind why we get the ‘expected’ answers is that, by
assumption and (8),

∏
j∈[n]

(
eiϕj 0
0 e−iϕj

)(
x

√
1− x2√

1− x2 −x

)
=

(
p(x) ·
· ·

)
.

So, supposing we could evaluate the polynomial at a matrix x← C, we get that, using
that

√
I − C2 = S,

“
∏
j∈[n]

(
eiϕjI 0
0 e−iϕjI

)(
C S
S −C

)
=

(
p(C) ·
· ·

)
.”

This should hold because block matrix multiplication operates by the same rules as scalar
matrix multiplication, but requires care to handle the non-square case.

17

Returning to our calculation, for n odd, recalling (30) and p(0) = 0, we have

ΠLUΦΠR = ΠLV DΦW
†ΠR

=

(
I
)(

V1
V2

)
DΦ

(
W †

1

W †
2

)(
I
)

=

(
V1

)
DΦ

(
W †

1

)

=

V1

0
p(SV)(C)

p(1)I

W †
1

 =

(
p(SV)(A) 0

0 0

)
.

Similarly, for n even, we have

ΠRUΦΠR = ΠRWDΦW
†ΠR

=

(
W1

)
DΦ

(
W †

1

)

=

W1

p(0)I p(SV)(C)
p(1)I

W †
1

 =

(
p(SV)(A) 0

0 0

)
.

We get what we want.

18

Problem Set 2: The QSVT
Problem 2.1 (When will my reflection show who I am inside?). QSVT achieves poly-
nomials by interspersing phase operators with signal rotation operators. However, these
rotation operators may look different in the literature. Consider two potential operators,
W (x), R(x), with the following matrix forms:

W (x) =

(
x i

√
1− x2

i
√
1− x2 x

)
R(x) =

(
x

√
1− x2√

1− x2 −x

)
(31)

Where W is the rotation operator while R is the reflection operator. We can define two
different kinds of QSP, QSPW (Φ, x) and QSPR(Φ, x) for these two different operators.
For example,

QSPW (Φ, x) :=
(n∏
j=1

eiϕjσzW (x)
)
eiϕ0σz .

Suppose we have some series of phases Φ = (ϕ0, . . . , ϕn) such that QSPW (Φ, x) forms
a desired polynomial p(x). Can we find a Φ′ such that QSPR(Φ

′, x) performs the same
polynomial? If so, find a formula for Φ′ in terms of Φ; if not, prove why.

Problem 2.2 (Perfectly balanced, as all things should be). The Chebyshev polynomials
of the first and second kind are functions such that, for all z ∈ C,

Tn(
1
2
(z + z−1)) = 1

2
(zn + z−n)

Un(
1
2
(z + z−1)) = (zn+1 − z−(n+1))/(z − z−1)

Prove that Tn and Un are polynomials. Then, prove that

Tn(x)
2 + (1− x2)Un−1(x)

2 = 1. (32)

Just a little more and we have a proof that these can be used in QSP/QSVT!

Problem 2.3 (They’re the same picture!). Return to [BCCKS17, Lemma 3.6]. What are
the angles of the phase operators? What are the polynomials that are being computed
with these phase operators? (A recursive definition is fine.)

Problem 2.4 (Block-encodings for any matrix). Given a matrix A ∈ Cd×d such that
∥A∥ ≤ 1, show there exists a unitary U ∈ C2d×2d such that U is a block-encoding of A:

U =

(
A ·
· ·

)
.

Prove that 2d is tight, i.e., there is some matrix A such that any unitary with A as a
submatrix must be size at least 2d× 2d. Note: this is true for non-square A as well, but
the argument might get more annoying.

Problem 2.5 (It’s just a phase). In our QSVT algorithm, we needed to apply gates of
the form eiϕ(2Π−I), where Π = (|0⟩⊗a ⟨0|⊗a)⊗ I. How do you implement these?

19

3 Approximating many things by polynomials
In the previous lecture, we showed that we can get block-encodings of p(SV)(A) from
block-encodings of A, provided that p(x) is a degree-n, even or odd polynomial such
that |p(x)| ≤ 1 for x ∈ [−1, 1]. Roughly, this turned a Q-block encoding to a nQ-block
encoding

For applications of interest, the main goal is actually to apply a non-polynomial
function; to capture these applications, we need tools for approximating the relevant
functions with bounded polynomials. In this lecture, we introduce Chebyshev polynomials,
our main tool for constructing such approximations. We will see that the class of low-degree
bounded polynomials is expressive enough for many applications.

More philosophically, it’s important to build intuition on when we can expect to
approximate functions by polynomials, as polynomial approximation is a ubiquitous tool
in quantum algorithms (and classical algorithms too).

3.1 Chebyshev polynomials and properties

Chebyshev polynomials are everywhere in applied math; we’ll cover a small amount of
the theory here.

Definition 3.1 (Chebyshev polynomial). The degree-n Chebyshev polynomial (of the
first kind), denoted Tn(x), is the function that satisfies, for all z ∈ C,

Tn(
1
2
(z + z−1)) = 1

2
(zn + z−n). (33)

We can see this is a polynomial by verifying that Tn satisfies the recurrence

Tn = 2x · Tn−1 − Tn−2,

with T0 = 1 and T1 = x. Plugging in z = exp(iθ) for θ ∈ [−π, π], we get another familiar
definition of the Chebyshev polynomials,

Tn(cos(θ)) = cos(kθ).

From these definitions we have that ∥Tn(x)∥[−1,1] := maxx∈[−1,1]|Tn(x)| ≤ 1, and that Tn
has the same parity as n, i.e. Tn(−x) = (−1)nTn(x).

Under mild “niceness” conditions, any function can be written as a series of Chebyshev
polynomials f(x) =

∑
k≥0 akTk(x).

Lemma 3.2 ([Tre19, Theorem 3.1]). Let f : [−1, 1]→ R be Lipschitz (i.e. |f(x)− f(y)| ≤
C|x− y| for finite C). Then f has a unique decomposition into Chebyshev polynomials

f(x) =
∞∑
k=0

akTk(x),

where the Chebyshev coefficients ak absolutely converge.

This is true for the same reason functions have Fourier series. In fact, the theory of
Chebyshev polynomials is a parallel theory. For z = eiθ, define g(z) = f(1

2
(z + z−1)).

Then g(z) is a function on the unit circle with a Laurent series.

g(z) =
∑
k

akTk(
1

2
(z + z−1)) =

∑
k

ak
2
(zk + z−k).

20

For θ ∈ [−π, π], define h(θ) = g(eiθ) = f(1
2
(eiθ+e−iθ)). Then h(θ) is a 2π-periodic function

with a Fourier series.

h(θ) =
∑
k

akTk(
1

2
(eiθ + e−iθ)) =

∑
k

ak
2
(eikθ + e−ikθ).

Roughly the same kinds of statements can be made in these three different settings (see
the appendices of [Tre19]); the Chebyshev version of the theory is most useful to us
because our algorithmic techniques work best for polynomials.

If you are familiar with Fourier analysis, you might now expect the Chebyshev
polynomials to obey some kind of orthogonality property. This is indeed the case, with
the appropriate choice of inner product.

Lemma 3.3 (Orthogonality property). {Tk}k are orthogonal under a particular choice of
inner product.

2

π

∫ 1

−1

Tk(x)Tℓ(x)√
1− x2

dx =

{
1 k = ℓ

0 otherwise

Proof. Substituting x = cos(θ) and dx = − sin(θ)dθ = −
√
1− x2dθ,∫ 1

−1

Tk(x)Tℓ(x)√
1− x2

dx =

∫ 0

π

−Tk(cos(θ))Tℓ(cos(θ))dz

=

∫ π

0

− cos(kθ) cos(ℓθ)dz =

{
π
2

k = ℓ

0 otherwise

(When k = ℓ = 0, we have π instead.)

From the orthogonality property, we can think about the Chebyshev series f(x) =∑
k≥0 akTk(x) as writing f as a vector in an orthogonal basis of functions, with ak as the

entries. Here, we can immediately deduce properties of these entries.

Lemma 3.4 (Chebyshev coefficients, [Tre19, Theorem 3.1]). For f(x) with a Chebyshev
series f(x) =

∑
k≥0 akTk(x), the Chebyshev coefficients can be computed with the integral

ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx. (34)

For k = 0 the same formula holds with the factor 2/π changed to 1/π.

Lemma 3.5 (Chebyshev coefficients are bounded). If ∥f(x)∥[−1,1] ≤ 1, then

|ak| =
2

π

∣∣∣∫ 1

−1

f(x)Tk(x)√
1− x2

dx
∣∣∣

≤ 2

π

∫ 1

−1

∥f∥[−1,1]∥Tk∥[−1,1]√
1− x2

dx

≤ 2

π

∫ 1

−1

1√
1− x2

dx

≤ 2.

21

It should make us happy that Chebyshev coefficients are bounded, since other kinds of
coefficients can behave much worse. For example, Chebyshev polynomials are bounded,
∥Tn(x)∥[−1,1] = 1, but if we write it out as a linear combination of monomials xk, the
coefficient for xn is 2n−1. That reasonable functions can have exponentially large coefficients
in the monomial basis is a common stumbling block for the working algorithmist. The
solution is often to work in a nicer basis, like Chebyshev polynomials.

3.2 Approximating functions from Chebyshev series

If we know that a function has a convergent Chebyshev series, we can approximate it by
a low-degree polynomial by truncating the series.

Definition 3.6 (Chebyshev truncation). For a function f : [−1, 1] → C written as a
Chebyshev series f(x) =

∑∞
k=0 akTk(x), we denote the degree-n Chebyshev truncation of

f as

fn(x) =
n∑
k=0

akTk(x).

If the function f one wishes to approximate is standard, closed forms of the Chebyshev
coefficients may be known, so one can take a Chebyshev truncation and explicitly bound
the error:

∥f − fn∥[−1,1] =
∥∥∥ ∞∑
k=n+1

akTk(x)
∥∥∥
[−1,1]

≤
∞∑

k=n+1

|ak|∥Tk(x)∥[−1,1] =
∞∑

k=n+1

|ak|.

In other words, by choosing n such that the coefficient tail sum is bounded by ε, we obtain
an ε-uniform approximation on [−1, 1]. If we had these Chebyshev coefficients explicitly,
we could bound them directly to get a polynomial approximation. However, we may not
know explicitly what the Chebyshev coefficients of our desired function is, so we can’t
easily bound them. The following shows that the Chebyshev coefficient tail is exponential,
provided that the function is analytic around [−1, 1].

Theorem 3.7 ([Tre19, Theorems 8.1 and 8.2]). Let f be an analytic function in [−1, 1] and
analytically continuable to the interior of the Bernstein ellipse Eρ = {12(z+ z

−1) : |z| = ρ},
where it satisfies |f(x)| ≤ M . Then its Chebyshev coefficients satisfy |a0| ≤ M and
|ak| ≤ 2Mρ−k for k ≥ 1.

Corollary 3.8. Consequently, for each n ≥ 0, its Chebyshev truncations satisfy

∥f − fn∥[−1,1] ≤
∑
k≥n+1

|ak| ≤ 2M
∑
k≥n+1

ρ−k =
2Mρ−n

ρ− 1
,

and choosing n = ⌈ 1
log(ρ)

log 2M
(ρ−1)ε

⌉, we have ∥f − fn∥[−1,1] ≤ ε.

Proof. Recall from (34) (and since inverting z does not change the contour integral) that
for k ≥ 1,

ak =
1

πi

∫
|z|=1

z−(k+1)f(1
2
(z + z−1))dz.

22

The boundary of Eρ is given by 1
2
(z + z−1) for |z| = ρ, and f is analytic in Eρ, so we may

choose a different contour without affecting the value of the integral:

ak =
1

πi

∫
|z|=ρ

z−(k+1)f(1
2
(z + z−1))dz.

The conclusion follows from the facts that the circumference of |z| = ρ is 2πρ and the
function is bounded by M . A similar argument gives the case k = 0, where (34) has 2πi
in the denominator.

Fact 3.9. The Bernstein ellipse Eρ for ρ = 1 + δ ≤ 2 satisfies

interior(Eρ) ⊂
{
x+ iy | x, y ∈ R, |x| ≤ 1 +

δ2

2
and |y| ≤ δ

}
.

Corollary 3.10 (Application to Hamiltonian simulation). Consider the function sin(tx).
Then for z = a+ ib on the interior of the Bernstein ellipse Eρ,

|sin(tz)| ≤ 1
2
|eitz − e−itz|

≤ 1
2
(|e−bt|+ |ebt|) ≤ e|bt|.

So, choosing ρ = 1 + 1/t, we can apply the theorem with M = O(1). When t ≥ 1, this
gives an ε-good approximation for the Chebyshev truncation of degree

n = O(t log
t

ε
).

So, we can use that a function f(x) is analytic and bounded in a small ball around
[−1, 1] to conclude that the Chebyshev truncation is a good polynomial approximation.
Further, we can get degree bounds which scale with log 1

ε
, corresponding to the coefficient

tail being exponential. This is a great bound for almost all purposes, but can be loose:
for example, the Chebyshev coefficients of sin(tx) actually decay super-exponentially,
and by being more careful it’s possible to show a scaling of log(1/ε)/ log log(1/ε) (for t
constant) [TT24].
Remark 3.11 (Chebyshev approximation vs Taylor series approximation). You might be
wondering what the difference is between truncating a Chebyshev series and truncating a
Taylor series, perhaps a more commonly known tool for polynomial approximation. In
fact, one can make a statement similar to Theorem 3.7 about Taylor series truncations
(see [GSLW19, Corollary 66]), but it becomes difficult to apply in settings where one does
not know the Taylor series. Note that this does not always give the right polynomial
approximation; for example, truncating the Taylor series of ex gives a degree which is
quadratically worse than optimal [SV14].

Theorem 3.7 shows that if one can analytically continue f to a Bernstein ellipse with
ρ = 1 + α for small α, then a degree ≈ 1

α
polynomial obtains good approximation error

on [−1, 1]. Unfortunately, since the approximation in Theorem 3.7 is based on Chebyshev
truncation, the approximation rapidly blows up outside the range [−1, 1] (i.e. growing
as O(|x|n) for x sufficiently outside [−1, 1]). In interesting applications of the QSVT
framework, this is an obstacle. For example, to use QSVT for solving a system of linear
equations, we need a polynomial approximation to x−1 on [δ, 1] that is bounded on [−1, 1].
Upon linearly remapping [δ, 1] to [−1, 1], this corresponds to a bounded approximation on
[−b, 1] for some b > 1, so Chebyshev truncations give us a very poor degree of control.

23

Chebyshev truncation is not enough for our purposes, since our criteria is different from
uniform approximation on [−1, 1]. For quantum linear systems, we require a polynomial
approximation close to 1/x on [−1,−1/κ]∪ [1/κ, 1], but it merely needs to be bounded on
[−1/κ, 1/κ]. This bounded requirement comes from the block-encoding machinery, which
requires boundedness to work.

As [GSLW19] points out, there are generic ways to find approximations to piecewise
smooth functions which satisfy this sort of “ε-close on smooth pieces, but bounded near
points of discontinuity” requirement, with log 1

ε
scaling in the degree.

Theorem 3.12 ([TT24, Theorem 21]). Let f be an analytic function in [−1, 1] and
analytically continuable to the interior of Eρ where ρ = 1 + α, where it is bounded by M .
For δ ∈ (0, 1

C
min(1, α2)) where C is a sufficiently large constant, ε ∈ (0, 1), and b > 1,

there is a polynomial q of degree O(b
δ
log b

δε
) such that

∥f − q∥[−1,1] ≤Mε,

∥q∥[−(1+δ),1+δ] ≤M,

∥q∥[−b,−(1+δ)]∪[1+δ,b] ≤Mε.

Proof sketch.

1. Applying Theorem 3.7 gives fn of degree n ≈ 1
α

approximating f in the interval
[−1, 1], but fn does not satisfy the other required conclusions due to its growth
outside [−1, 1].

2. We multiply fn by a “threshold” r based on the Gaussian error function erf, whose
tails decay much faster than the Chebyshev polynomials grow outside [−1, 1]. Our
function r has the property that inside [−1, 1], it is close to 1, and outside [−(1 +
δ), 1 + δ], it is close to 0.

3. Using bounds on the growth of erf, we show r · fn is bounded on a Bernstein ellipse
of radius 1 + δ

b
appropriately rescaled, and applying Theorem 3.7 once more gives

the conclusion.

We now apply this theorem to give a polynomial approximation of δ/x which is close
in the region [δ, 1] and bounded on [−1, 1]. If we use QSVT to apply this polynomial to
a block-encoding of a matrix, it will approximately invert it if its singular values are at
least δ; this is a clean way to derive the HHL quantum algorithm for solving systems of
linear equations [HHL09].

Corollary 3.13. Let δ, ε ∈ (0, 1), and let f(x) = | δ
x
|. There exist both even and odd

polynomials p(x) of degree O(1
δ
log 1

δε
) such that ∥p∥[−1,1] ≤ 3 and ∥p− f∥[δ,1] ≤ ε.

Proof. Assume δ is sufficiently small, else taking a smaller δ only affects the bound by a
constant. We rescale the region of interest: x = 1−δ

2
y+ 1+δ

2
is in [δ, 1] for y ∈ [−1, 1], so let

g(y) := δ
(1− δ

2
y +

1 + δ

2

)−c
.

24

We require a bound of g on Eρ for ρ = 1+
√
δ/4. Since f is largest closest to the origin, g

is largest at the point closest to −1+δ
1−δ , i.e. −1

2
(ρ+ ρ−1) > −(1 + δ

8
) by Fact 3.9. Further,

g(−1

2
(ρ+ ρ−1)) ≤ g(−(1 + δ

8
))

≤ δ
(
− 1− δ

2
(1 +

δ

8
) +

1 + δ

2

)−1

= (1− 1− δ
16

)−1 ≤ 3

2
.

Let δ̃ = δ
4C

for sufficiently large C, and b = 4. Theorem 3.12 yields q(y) satisfying:

∥q(y)− g(y)∥[−1,1] ≤ ε, ∥q(y)∥[−(1+δ̃),1+δ̃] ≤ 2, ∥q(y)∥[−4,−(1+δ̃)]∪[1+δ̃,4] ≤ ε.

Shifting back y = 2
1−δ (x−

1+δ
2
), it is clear for sufficiently large C that y = −1+3δ

1−δ (which
corresponds to x = −δ) has y < −(1 + δ̃), and y = −3+δ

1−δ (which corresponds to x = −1)
has y > −4. So, ∥∥∥∥q(2

1− δ
(x− 1 + δ

2
))− f(x)

∥∥∥∥
[δ,1]

≤ ε,∥∥∥∥q(2

1− δ
(x− 1 + δ

2
))

∥∥∥∥
[−δ,δ]

≤ 2,∥∥∥∥q(2

1− δ
(x− 1 + δ

2
))

∥∥∥∥
[−1,−δ]

≤ ε.

(35)

Depending on whether we wish the final function to be even or odd, we take

p(x) = q(
2

1− δ
(x− 1 + δ

2
))± q(2

1− δ
(−x− 1 + δ

2
)).

Then the guarantees of (35) give ∥p(x)−f(x)∥[δ,1] ≤ 2ε and ∥p(x)∥[−1,1] ≤ 3, and we rescale
ε to conclude. The final degree of the polynomial is the degree of q(y): O(1

δ
log 1

δε
).

3.3 Lower bounds on polynomial approximation

There are limitations to what kinds of functions can be approximated by low-degree
polynomials. The most common lower bounds to keep in mind are the Markov brothers’
and Bernstein inequalities:

Theorem 3.14 (Markov brothers’ inequality [Sch41, Theorem 1]). Let p(x) be a degree n
polynomial such that ∥p(x)∥[−1,1] ≤ 1. Then

∥p′(x)∥[−1,1] ≤ n2 (36)

Theorem 3.15 (Bernstein’s inequality [Sch41, Theorem 2]). Let p(x) be a degree n
polynomial such that ∥p(x)∥[−1,1] ≤ 1. Then, for x ∈ (−1, 1),

|p′(x)| ≤ n√
1− x2

. (37)

25

Remark 3.16. This means that a bounded polynomial has derivative O(n) near the center of
[−1, 1], but can be O(n2) near the edge. This suggests that functions can be approximated
better when its worst-conditioned pieces are on the edges of [−1, 1]. This is true: note
that the above argument shows that sufficiently good bounded polynomial approximations
to δ/x on [−1,−δ] ∪ [δ, 1] must have degree Ω(1/δ).

However, suppose we have a block-encoding of I − A, where A is a Hermitian matrix.
That ∥I −A∥ ≤ 1 implies that A is PSD, and suppose its eigenvalues are in [δ, 1]. We can
then get an approximate block-encoding of A−1 via a polynomial approximation of

1

1− x
for x ∈ [−1 + δ, 1].

There is a O(1/
√
δ)-degree polynomial approximation of this,

1

x− (1 + δ)
=

−2√
2δ − δ2

∞′∑
k=0

(1 + δ −
√
2δ + δ2)kTk(x)

implying that we can invert a matrix quadratically faster if we get a block-encoding of
I − A rather than A [OD21].

You might think, this doesn’t make sense, since surely it’s possible to convert a block-
encoding of A to a block-encoding of I − A. But here, the scaling of the block-encoding
becomes very important: we need a block-encoding of I − A, not (I − A)/2, which is
what one gets from extensibility properties of block-encoding. It’s possible to amplify
this block-encoding to a block-encoding of (I − A)(1 − ε) via uniform singular value
amplification [GSLW19, Theorem 30] (which is just QSVT with a different polynomial),
but doing this costs too much, making the subsequent quadratic improvement not worth it.
The brittle nature of this quadratic savings makes sense if we realize that a block-encoding
of I−A ‘proves’ that A is PSD, whereas we can construct a block-encoding of (I−A)/2 for
any A. Really, the quadratic savings comes from PSDness—it’s the same savings achieved
by conjugate gradient [TB97, Lecture 38], indeed for similar reasons—so it shouldn’t be
possible to cheat and get this improvement for non-PSD A.

26

Problem Set 3: Polynomial approximation
Problem 3.1 (Polynomial approximation of monomials). First, compute the Chebyshev
coefficients of the monomial m(n)(x) = xn. (Doing this via Tk(12(z + z−1)) = 1

2
(zn + z−n)

formulation may be easiest.) How small can k be such that the Chebyshev truncation
m

(n)
k a good approximation of m(n):

∥m(n) −m(n)
k ∥[−1,1] ≤ ε?

Problem 3.2 (Chebyshev interpolation [Tre19]). The Chebyshev interpolant of a function
f , denoted pn, is the unique degree-n polynomial such that pn(xj) = f(xj) for all
xj = cos(jπ/n), j = 0, 1, . . . , n. Prove that8

∥f(x)− pn(x)∥[−1,1] ≤ 2
∑
ℓ≥n

|aℓ|.

Hint: when is Tk(xj) = Tℓ(xj) for all points {xj}?

Problem 3.3 (Jackson theorems, [Tre19]). Let f : [−1, 1]→ R be absolutely continuous
and suppose f is of bounded variation, meaning that

∫ 1

−1
|f ′(x)|dx ≤ V . Then show that

the Chebyshev coefficients of f satisfy

|ak| ≤
2V

πk
.

Problem 3.4 (Optimal polynomial approximations; upper and lower bounds). Consider
a function f : [−1, 1]→ R with a Chebyshev expansion f(x) =

∑
k≥0 akTk(x). Prove that

(1
2

∞∑
k=n+1

a2k

) 1
2 ≤ min

p∈R[x]
deg p=n

∥f(x)− p(x)∥[−1,1] ≤
∞∑

k=n+1

|ak|

For what kind of Chebyshev coefficient decay is this characterization tight up to constants?

8Recall that our approximation results used that ∥f(x) − fn(x)∥[−1,1] ≤
∑

ℓ≥n|aℓ|. So, Chebyshev
interpolants pn give the same results as Chebyshev truncations fn, up to a constant factor. Interpolants
have the advantage of being computable in n+ 1 function evaluations.

27

4 Introducing quantum-inspired linear algebra
We have established a theory of quantum linear algebra based on the block-encoding: you
might have noticed that, with block-encodings, we can implicitly manipulate exponentially
large matrices in polynomial time. This raises a natural question: perhaps we can harness
Nature’s linear algebra processor to manipulate data exponentially faster than we can with
classical computers. The key work in this line is Harrow, Hassidim, and Lloyd’s quantum
algorithm for sampling from the solution to a sparse system of linear equations [HHL09].
QML has since rapidly developed into an active field of study with numerous proposals for
quantum speedups for machine learning tasks in domains ranging from recommendation
systems [KP17] to topological data analysis [LGZ16].

A key tool underlying many QML algorithms is the observation that certain kinds of
data structures could allow for efficient preparation of block encodings of arbitrary matrices,
assuming the ability to query these data structures in superposition (i.e. assuming that
the data is in QRAM). In particular, this allows for log(rc)-block encodings of A/∥A∥F.
Many QML algorithms relied on this data structure for exponential speedup, with the
belief that this additional assumption would not affect it. However, it was discovered
that classical algorithms given this data structure can achieve the same results up to
polynomial slowdown. These are known as “dequantized” algorithms. The existence of
a dequantized algorithm means that its quantum counterpart cannot give exponential
speedups on classical data, illuminating the landscape of QML speedups.

Figure 4: Pictured is the landscape of quantum machine learning algorithms after
dequantization. Here, ‘better candidate for exponential quantum speedup’ refers to the
number of ‘caveats’ they successfully address, as described by Aaronson [Aar15]. All
of these algorithms can be placed in the QSVT framework, and in this framework, the
algorithms that do not rely on sparsity assumptions can be dequantized, thereby showing
that they cannot produce exponential speedups.

Quantum singular value transformation captures essentially all known linear algebraic

28

QML techniques [MRTC21], including all prior dequantized QML algorithms (up to
minor technical details), so it is our natural target for dequantizing. We cannot hope to
dequantize all of QSVT, because with sparse input data encoded appropriately, QSVT
can simulate algorithms for BQP-complete problems [JW06; HHL09]. However, we show
that we can dequantize the QSVT framework, provided that the input data comes in the
state preparation data structure commonly used for quantum linear algebra. Such data
structures only allow for efficient QML when the input is low-rank. Nevertheless, they
are the only way we know how to run quantum linear algebra on unstructured classical
data, so this setting covers all QML algorithms that do not rely on sparsity assumptions.
We present a classical analogue of the QSVT framework that is only polynomially slower
when the input is low rank, and apply it to dequantize QML algorithms.

4.1 A vignette: The swap test, and what’s in an access model

|0⟩ H • H

|ϕ⟩
SWAP

|ψ⟩

Figure 5: The quantum circuit for the swap test, taken from [BCWW01, Figure 1].

It seems counterintuitive that classical linear algebra algorithms can perform nearly as
well as quantum ones, even on classical data. In some sense, what dequantization shows
is that some quantum linear algebra algorithms do not fully exploit “quantumness,” since
they can be mimicked classically using sampling procedures. We’ll investigate a simple
example of a quantum linear algebra algorithm: the swap test [BCWW01].

Suppose we have two d-dimensional vectors ϕ, ψ ∈ Cd, both with unit norm.9 We wish
to compute their overlap |⟨ϕ|ψ⟩|2. There is a quantum algorithm, the swap test (shown
in Fig. 5), to solve this: prepare the log(d)-qubit quantum states |ϕ⟩ =

∑d
i=1 ϕ(i)|i⟩ and

|ψ⟩ =
∑d

i=1 ψ(i)|i⟩, along with one additional qubit in the state H |0⟩ = 1√
2
(|0⟩ + |1⟩).

Then, apply a controlled SWAP between |ϕ⟩ and |ψ⟩, with the additional qubit as the
control, and then measure this qubit in the Hadamard basis; the measurement produces 1
with probability 1

2
− 1

2
|⟨ϕ|ψ⟩|2, so we can use it to estimate the overlap. Averaging over

more runs of this circuit gives an estimate to 0.01 error with only O(log(d)) quantum
gates and a constant number of copies of the input states. Even approximating overlaps
using classical computers requires Ω(d) time, since we need to read this many entries of
the input to distinguish the two cases ϕ = ei, ψ = ei and ϕ = ei, ψ = ej. So, we might
naively conclude that the swap test achieves an exponential quantum advantage in the
task of “computing overlaps”. This is not as farfetched a claim as it might appear: the
general version of this task, where we wish to estimate |⟨0|⊗nU |0⟩⊗n| for U ∈ C2n×2n

a unitary matrix encoded as a poly(n)-sized quantum circuit, indeed gives a quantum
advantage (since this task is BQP-hard). Further, this idea has been proposed before in
QML: a preprint of Lloyd, Mohseni, and Rebentrost claims to achieve an exponential

9A heads-up: for these final lectures, the ith index of a vectors is denoted v(i), which is a bit more
consistent with this literature. Similarly, entries of matrices are denoted A(i, j).

29

quantum advantage for clustering with the swap test, computing the distance of a vector
to a centroid by estimating the overlap of states like the above [LMR13].

However, the comparison between O(log(d)) and Ω(d) hides the difference in input
models: the quantum algorithm requires copies of the states |ϕ⟩ and |ψ⟩, and the classical
lower bound assumes that we are only given the input vectors as lists of entries. For
applications to machine learning, it’s reasonable to receive the data in the latter form,
since the data is classical (in that it comes from classical sources, as is the case for the
vast majority of data). For example, machine learning datasets are stored in this way.
This leads us to the question: given ϕ and ψ classically, how can we efficiently prepare
their corresponding quantum states? Though state preparation assumptions like these
are common in quantum linear algebra, they cannot be satisfied in general: the typical
way of satisfying them is to assume pre-processing to load the input into a certain kind
of data structure in quantum random access memory (QRAM) [GLM08; Pra14; JR23].
QRAM is a speculative piece of quantum hardware which supports storing n bits of data
and subsequently querying that data in superposition in (functionally) polylog(n) time,
similarly to how we consider classical RAM; for the sake of comparison, we assume the
existence of QRAM.10 If we assume that input is given in this data structure (see Fig. 6)
for the sake of the quantum computer, then for a fair comparison, we should give our
classical computer this same data structure.

∥v∥2

|v(1)|2 + |v(2)|2 |v(3)|2 + |v(4)|2

|v(1)|2 |v(2)|2 |v(3)|2 |v(4)|2

v(1) v(2) v(3) v(4)

Figure 6: Dynamic data structure used to perform efficient state preparation of a vector
v ∈ C4. The values displayed are stored in QRAM, along with pointers to other values as
designated by the entries. Observe that, by starting from the root of the tree and recursing
appropriately, we can sample i ∈ [4] with probability proportional to |v(i)|2 using only
classical access to the data structure. A variety of data structures have similar properties,
but this one has the advantage of supporting updating entries in O(log n) accesses.

If A is in a state preparation data structure in QRAM (like the vector case, see Fig. 7),
we can implement a block-encoding of A/∥A∥F efficiently [GSLW19, Lemma 50].11 This
type of block-encoding is the one commonly used for quantum linear algebra algorithms on
classical data, since it works for arbitrary matrices and vectors, paying only a ∥A∥F/∥A∥
(the square root of what’s known in the classical algorithms literature as stable rank)
factor in sub-normalization.

10Of course, neither forms of RAM could be “truly” polylog(n) time, since storing n bits of data requires
poly(n) space and therefore poly(n) time for the information to travel across that amount of space. The
goal would be to optimize QRAM as well as classical RAM, so that accesses can be treated as O(log(n))
time, the cost of simply writing down the pointer into the data.

11∥A∥F denotes Frobenius norm, (
∑

i,j |A(i, j)|2)1/2.

30

∥a∥2 = ∥A∥2F

|a1|2 = ∥A(1, ·)∥2 |a2|2 = ∥A(2, ·)∥2

|A(1, 1)|2 + |A(1, 2)|2 |A(1, 3)|2 + |A(1, 4)|2 |A(2, 1)|2 + |A(2, 2)|2 |A(2, 3)|2 + |A(2, 4)|2

|A(1, 1)|2 |A(1, 2)|2 |A(1, 3)|2 |A(1, 4)|2|A(2, 1)|2 |A(2, 2)|2 |A(2, 3)|2 |A(2, 4)|2

A(1, 1) A(1, 2) A(1, 3) A(1, 4) A(2, 1) A(2, 2) A(2, 3) A(2, 4)

Figure 7: Dynamic data structure for a matrix A ∈ C2×4. We compose the data structure
for a, the vector of row norms, with the data structure for A’s rows.

If ϕ in this data structure, a classical computer can draw independent samples i ∈ [n]
with probability proportional to |ϕ(i)|2 with O(log(n)) accesses. Equipped with this
additional type of input access, we can estimate the overlap much faster via a Monte
Carlo method: pull one sample, s, from |ϕ⟩, and then compute the estimator ψ(s)/ϕ(s).
This estimator has expected value ⟨ϕ|ψ⟩ and variance 1, so by averaging over a constant
number of runs, we can estimate of the overlap to 0.01 error using O(log d) classical gates,
assuming that the entries of ϕ and ψ are specified with O(log d) bits. The swap test
achieves the same dependence on dimension as the dequantized swap test, so it does not
give an exponential speedup in this setting. (A more precise analysis would reveal that a
quadratic quantum speedup in error is possible, from O(1/ε2) to O(1/ε).) This argument
against exponential quantum speedup remains valid provided we want to run the quantum
algorithm in a setting where we could also perform the quantum-inspired algorithm.

The general principle of the dequantized swap test extends to other QML algorithms.
In the typical RAM access model, we assume only that we can query entries efficiently. In
other words, we receive our input v ∈ Cn as Q(v) with q(v) = 1.

Definition 4.1 (Query access). For a vector v ∈ Cn, we have Q(v), query access to v, if
for all i ∈ [n], we can query for v(i). Let q(v) denote the (time) cost of such a query.

For comparison to quantum algorithms, we assume a stronger input model, sampling
and query access, which supports the types of queries we need to perform the overlap
estimation algorithm.

Definition 4.2 (Sampling and query access to a vector). For a vector v ∈ Cn, we have
SQ(v), sampling and query access to v, if we can:

1. query for entries of v as in Q(v);

2. obtain independent samples i ∈ [n] from the distribution Dv, which is defined such
that the probability of sampling i is |v(i)|2/∥v∥2;

3. query for ∥v∥.

Let sq(v) denote the time cost of any query.

We will refer to samples from Dv as importance samples from v, though one can view
them as measurements of the quantum state |v⟩ := 1

∥v∥
∑
v(i)|i⟩ in the computational

basis.

31

If we only have Q(v), then responding to queries from SQ(v) (or preparing the state
|v⟩) requires linear-time pre-processing. When quantum algorithms use |v⟩, it’s sensible to
give classical algorithms access to SQ(v), since this is Q(v) with access to computational
basis measurements of |v⟩. In fact, the usual methods for efficiently preparing |v⟩ on
a quantum computer from v given classically12 all seem to incidentally give a classical
computer access to SQ(v). For example, if input is loaded in the QRAM data structure,
as commonly assumed in QML in order to satisfy state preparation assumptions [Pra14;
Cil+18], then we have log-time sampling and query access to it. So, a fast classical
algorithm for a problem in this classical model implies lack of quantum speedup for the
problem, at least in the usual settings explored in the QML literature.

As the inner product estimation protocol suggests, SQ(v) is a much more powerful
access model than Q(v). Classical algorithms can exploit the measurements of input
data possible with sampling and query access to speed up linear algebra to become
time-independent of the dimension. Specifically, sketching algorithms explore how to
use randomness to perform a dimensionality reduction and “sketch” a large matrix A
down to a constant-sized normalized submatrix of A which behaves similarly to the
full matrix [Woo14]. The computational basis measurements one can produce in the
quantum-inspired input model allow for the efficient estimation of matrix products through
Monte Carlo methods [DKM06], which can be applied iteratively to produce dequantized
algorithms that achieve surprisingly similar bounds to their quantum counterparts. We
explore this in our next example.

4.2 Extensibility properties

Quantum-inspired algorithms typically don’t give exact sampling and query access to
the output vector. Instead, we get a more general version of sampling and query access,
which assumes we can only access a sampling distribution that oversamples the correct
distribution.13

We can show that oversampling and query access is approximately closed under
arithmetic operations. These extensibility properties together imply that, given input
matrices and vectors in data structures in QRAM, we can get oversampling and query
access to low-degree polynomials of the input via extensibility properties; in the same
setting, QSVT gives block-encodings of low-degree polynomials of the input, through
similar properties. The classical algorithm’s runtime is only polynomially slower than the
corresponding quantum algorithm (except in the ε parameter). This dequantizes QSVT.

Definition 4.3 (Oversampling). For p, q ∈ Rn
≥0 that are distributions, meaning

∑
i p(i) =∑

i q(i) = 1, we say that p ϕ-oversamples q if, for all i ∈ [n], p(i) ≥ q(i)/ϕ.

The motivation for this definition is the following: if p ϕ-oversamples q, then we can
convert a sample from p to a sample from q with probability 1/ϕ using rejection sampling:
sample an i distributed as p, then accept the sample with probability q(i)/(ϕp(i)) (which
is ≤ 1 by definition).

12This assumption is important. When input data is quantum (say, it is coming directly from a
quantum system), a classical computer has little hope of performing linear algebra on it efficiently, see for
example [ACQ22; CHM21].

13Oversampling turns out to be the “natural” form of approximation in this setting; other forms of
error do not propagate through quantum-inspired algorithms well.

32

Definition 4.4 (Oversampling and query access to a vector). We have ϕ-oversampling
and query access to a vector v ∈ Cn, SQϕ(v), if:

1. we can query for entries of v, Q(v), and;

2. we have sampling and query access to an “entry-wise upper bound” vector ṽ, SQ(ṽ),
where ∥ṽ∥2 = ϕ∥v∥2 and |ṽ(i)| ≥ |v(i)| for all indices i ∈ [n].

Let sqϕ(v) denote the time cost of any query.

The parameter ϕ is the classical analogue of the scaling parameter α for block-
encodings [GSLW19]. These appear in running times of algorithms because they correspond
to overhead in rejection sampling and post-selection, respectively.

Lemma 4.5 (Sampling from oversampling). Suppose we are given SQϕ(v) and some
δ ∈ (0, 1]. Denote sq(v) := ϕ sqϕ(v) log

1
δ
. We can sample from Dv with probability

≥ 1− δ in O(sq(v)) time. We can also estimate ∥v∥ to ν multiplicative error for ν ∈ (0, 1]
with probability ≥ 1− δ in O(1

ν2
sq(v)) time.

Proof. Consider the following rejection sampling algorithm to generate samples: sample
an index i from ṽ, and output it as the desired sample with probability r(i) := |v(i)|2

|ṽ(i)|2 .
Otherwise, restart. We can perform this: we can compute r(i) in O(sqϕ(v)) time and
r(i) ≤ 1 since ṽ bounds v.

The probability of accepting a sample in a round is
∑

iDṽ(i)r(i) = ∥v∥2/∥ṽ∥2 = ϕ−1

and, conditioned on a sample being accepted, the probability of it being i is |v(i)|2/∥v∥2,
so the output distribution is Dv as desired. So, to get a sample with ≥ 1− δ probability,
run rejection sampling for at most 2ϕ log 1

δ
rounds.

To estimate ∥v∥2, notice that we know ∥ṽ∥2, so it suffices to estimate ∥v∥2/∥ṽ∥2 which
is ϕ−1. The probability of accepting the rejection sampling routine is ϕ−1, so we run
3ν−2ϕ log 2

δ
rounds of it for estimating ϕ−1. Let Z denote the fraction of them which end

in acceptance. Then, by a Chernoff bound we have

Pr[|Z − ϕ−1| ≥ νϕ−1] ≤ 2 exp
(
− ν2zϕ−1

2 + ν

)
≤ δ,

so Z∥ṽ∥2 is a good multiplicative approximation to ∥v∥2 with probability ≥ 1− δ.

Generally, compared to a quantum algorithm that can output (and measure) a desired
vector |v⟩, our algorithms will output SQϕ(u) such that ∥u− v∥ is small. So, sq(u) is the
relevant complexity measure that we will analyze and bound: if we wish to mimic samples
from the output of the quantum algorithm we dequantize, we will pay a one-time cost to
run our quantum-inspired algorithm for “obtaining” SQϕ(u), and then pay sq(u) cost per
additional measurement. As for error, bounds on ∥u− v∥ imply that measurements from
u and v follow distributions that are close in total variation distance [Tan19, Lemma 4.1].

Lemma 4.6 (Summing SQ-accessible vectors [Tan19, Proposition 4.3]). Given SQφt
(vt) ∈

Cn and λt ∈ C for all t ∈ [τ], we have SQϕ(
∑τ

t=1 λtvt) for ϕ = τ
∑
φt∥λtvt∥2

∥
∑
λtvt∥2 and

sqϕ(
∑
λtvt) =

∑τ
t=1 sq(vt) (after paying O(

∑τ
t=1 sqφt

(vt)) one-time pre-processing cost
to query for norms).

33

Proof. We prove it for τ = 2, and the general statement follows from induction. Denote
u := λ1v1 +λ2v2. To compute u(s) for some s ∈ [n], we just need to query v1(s) and v2(s),
querying v1 and v2 each once. So, it suffices to get SQ(ũ) for an appropriate bound ũ. We
choose

ũ(s) =
√
2
√
|λ1ṽ1(s)|2 + |λ2ṽ2(s)|2,

so that |ũ(s)| ≥ |u(s)| by Cauchy–Schwarz, and ∥ũ∥2 = 2(∥λ1ṽ1∥2+∥λ2ṽ2∥2) = 2(φ2
1∥λ1v1∥2+

φ2
2∥λ2v2∥2), giving the desired value of ϕ.

We have SQ(ũ): we can compute ∥ũ∥2 by querying for the norms ∥ṽ1∥ and ∥ṽ2∥,
compute ũ(s) by querying ṽ1(s) and ṽ2(s). We can sample from ũ by first sampling
t ∈ {1, 2} with probability ∥λtṽt∥2

∥λ1ṽ1∥2+∥λ2ṽ2∥2 , and then taking our sample to be j ∈ [n] from
ṽt. The probability of sampling j ∈ [n] is correct:

∥λ1ṽ1∥2

∥λ1ṽ1∥2 + ∥λ2ṽ2∥2
|ṽ1(j)|2

∥ṽ1∥2
+

∥λ2ṽ2∥2

∥λ1ṽ1∥2 + ∥λ2ṽ2∥2
|ṽ2(j)|2

∥ṽ2∥2

=
|λ1ṽ1(j)|2 + |λ2ṽ2(j)|2

∥λ1ṽ1∥2 + ∥λ2ṽ2∥2
=
|ũ(j)|2

∥ũ∥2
.

If we pre-process by querying all the norms ∥ṽℓ∥ in advance, we can sample from the
distribution over i’s in O(1) time, using an alias sampling data structure for the distribution
(see the problem set), and we can sample from ṽt using our assumed access to it, SQφt

(vt).

34

Problem Set 4: Dequantizing QSVT
Before you begin, recall the definitions of sampling and query access for vectors and ma-
trices (SQ(v), SQ(A)) and oversampling and query access (SQϕ(v), SQϕ(A)) [CGLLTW22,
Definition 3.2]. Below, time complexities are in the word RAM model: basically, assume
that reading input numbers, and performing operations on those numbers, cost O(1).

Problem 4.1 (Errare humanum est...). Suppose we have SQϕu(u), SQϕv(v) for vectors
u, v. Show that we have SQϕ(A) for A := uv† and ϕ = ϕuϕv with cost sqϕ(A) =
sqϕu(u) + sqϕv(v).

Problem 4.2 (...sed perseverare (non?) diabolicum.). Suppose we are given a matrix
A ∈ Cm×m with at most s non-zero entries per row, and suppose all entries are bounded
by c. We are given this matrix as a list of non-zero entries (i, j, A(i, j)). Show how to
perform SQϕ(A) queries for ϕ = c2 sm

∥A∥2F
with sqϕ(A) = s.14 This means that we can run

“dequantized” algorithms on sparse matrices with condition number κ; why doesn’t this
imply that QSVT admits no exponential speedup for sparse matrices?

Problem 4.3 (The alias method [Vos91]). Let p = (p1, . . . , pm) be a set of probabilities,
so pi ≥ 0 and

∑
pi = 1. Suppose also that all of the pi’s are described in binary with O(1)

bits.

1. Suppose we are given a uniformly random number x ∈ [0, 1] as a stream of random
bits. Show how to sample i ∈ [m] such that Pr[sample ℓ] = pℓ in O(m) operations.

2. Suppose we are given p = (p1, . . . , pm) in the following form: we get a list of m
probability distributions d1, . . . , dm such that 1

m
(d1 + · · ·+ dm) = p and every di is

supported on at most two outcomes. Show that we can sample i ∈ [m] according to
p in O(1) time.

3. Prove that we can convert any distribution p into the form described above. Prove
that we can do this in O(m) time.15

14Hint: We immediately have query access to A. What’s a good upper bound that’s easy to sample
from?

15This implies that, if we get time to pre-process, we can get a data structure such that we can respond
to SQ(v) queries in O(1) time (in the word RAM access model).

35

5 Quantum-inspired algorithms: sketching and beyond
Recall our definition of oversampling and query access.

Definition 4.4 (Oversampling and query access to a vector). We have ϕ-oversampling
and query access to a vector v ∈ Cn, SQϕ(v), if:

1. we can query for entries of v, Q(v), and;

2. we have sampling and query access to an “entry-wise upper bound” vector ṽ, SQ(ṽ),
where ∥ṽ∥2 = ϕ∥v∥2 and |ṽ(i)| ≥ |v(i)| for all indices i ∈ [n].

Let sqϕ(v) denote the time cost of any query.

Intuitively speaking, estimators that use Dv can also use Dṽ via rejection sampling
at the expense of a factor ϕ increase in the number of utilized samples. From this
observation we can prove that oversampling access implies an approximate version of the
usual sampling access:

Lemma 4.5 (Sampling from oversampling). Suppose we are given SQϕ(v) and some
δ ∈ (0, 1]. Denote sq(v) := ϕ sqϕ(v) log

1
δ
. We can sample from Dv with probability

≥ 1− δ in O(sq(v)) time. We can also estimate ∥v∥ to ν multiplicative error for ν ∈ (0, 1]
with probability ≥ 1− δ in O(1

ν2
sq(v)) time.

Lemma 4.6 (Summing SQ-accessible vectors [Tan19, Proposition 4.3]). Given SQφt
(vt) ∈

Cn and λt ∈ C for all t ∈ [τ], we have SQϕ(
∑τ

t=1 λtvt) for ϕ = τ
∑
φt∥λtvt∥2

∥
∑
λtvt∥2 and

sqϕ(
∑
λtvt) =

∑τ
t=1 sq(vt) (after paying O(

∑τ
t=1 sqφt

(vt)) one-time pre-processing cost
to query for norms).

5.1 Another vignette: Tools for the matrix-vector product

Assuming A and b are in appropriate data structures in QRAM, we can implement a block-
encoding of A/∥A∥F and prepare copies of |b⟩ efficiently, so we can quantumly produce a
sample from Ab in O(

∥A∥2F∥b∥
2

∥Ab∥2) time. We can dequantize this algorithm! Classically, under
identical assumptions, we can produce a sample from a v such that ∥v − Ab∥ ≤ ε∥Ab∥ in
O(

∥A∥4F∥b∥
4

ε2∥Ab∥4) time, only polynomially slower than quantum.
We note here that a dependence on error ε appears here where it does not in the

quantum setting. However, this is not a realizable quantum speedup (except possibly
for sampling tasks) since the output is a quantum state: estimating some statistic of
the quantum state requires incurring a polynomial dependence on ε. For example, if the
goal is to estimate |⟨v|Ab⟩|2, where v is a given vector, then this can be done with 1/ε2

invocations of a swap test (or 1/ε if one uses amplitude amplification). More generally,
distinguishing a state from one ε-far in trace distance requires Ω(1/ε) additional overhead,
even when given an oracle efficiently preparing that state, so estimating quantities to this
sensitivity requires polynomial dependence on ε.

To see this, we first consider a simple case: where b is a constant-sized vector, so
n = O(1). Then we simply wish to sample from a linear combination of columns of A,
since Ab =

∑n
t=1 b(t)A(·, t). If A is in the QRAM data structure (i.e. storing A† in Fig. 7),

then this means its columns are in the vector QRAM data structures (Fig. 6), so classically

36

we have sampling and query access to the columns of A, SQ(A(·, t)) for all t ∈ [n]. This
implies we have sampling and query access to Ab, up to some overhead.

Given access to a constant number of vectors SQ(A(·, 1)), . . . , SQ(A(·, n)), we have
access to linear combinations SQϕ(Ab) with ϕ = n

∑n
t=1|b(t)|2∥A(·,t)∥2

∥Ab∥2 ≤ n∥A∥2F∥b∥
2

∥Ab∥2 and
sqϕ(Ab) = O(n) (Lemma 4.6; the inequality follows from Cauchy-Schwarz). Finally,
from SQϕ(Ab) we can perform approximate versions of all the queries of SQ(Ab) with
a factor ϕ of overhead (Lemma 4.5). This is possible with rejection sampling: given
SQϕ(v), pull a sample i from ṽ; accept it with probability |v(i)|2/|ṽ(i)|2, and restart
otherwise; the output will be a sample from v. In particular, we can sample from Ab in
ϕn = O(n2 ∥A∥2F∥b∥

2

∥Ab∥2) time in expectation, which is good when n = O(1).
Now, consider when n is too large to iterate over in our linear combination of vectors. In

this setting, we can use the approximate matrix product property of importance sampling
to reduce the number of vectors under consideration. Consider pulling a sample s ∈ [n]
where we sample i with probability p(i). Then 1

p(s)
b(s)A(·, s), a rescaled random column

of A, has expectation
∑

i b(i)A(·, i) = Ab. If the sampling distribution is chosen to be
p(i) = |b(i)|2

∥b∥2 , an importance sample from SQ(b), then a variance computation shows

that the average of τ = Θ(
∥A∥2F
ε2∥A∥2) copies of this random vector is ε∥A∥∥b∥-close to Ab

with probability ≥ 0.9 (Lemma 5.6). This average, which we denote v, is now a linear
combination of only τ columns of A, each of which we have sampling and query access. So,
we can use the closure properties mentioned before to get SQϕ(v) for ϕ = O(

∥A∥2F∥b∥
2

∥v∥2) and

sqϕ(v) = O(τ), and a sample from v in ϕτ = O(
∥A∥4F∥b∥

2

ε2∥A∥2∥v∥2) time in expectation. Rescaling
ε by a factor of ∥Ab∥

∥A∥∥b∥ gives the result stated above.

5.2 Oversampling and query access to matrices

Now, we formalize the above discussion. We begin by defining (over)sampling and query
access to a matrix, and showing some basic properties.

Definition 5.1 (Oversampling and query access to a matrix). For a matrix A ∈ Cm×n,
we have SQ(A) if we have SQ(A(i, ·)) for all i ∈ [m] and SQ(a) for a ∈ Rm the vector of
row norms (a(i) :=∥A(i, ·)∥).

We have SQϕ(A) if we have Q(A) and SQ(Ã) for Ã ∈ Cm×n satisfying ∥Ã∥2F = ϕ∥A∥2F
and |Ã(i, j)|2 ≥ |A(i, j)|2 for all (i, j) ∈ [m]× [n].

Let sqϕ(A) denote the cost of every query. We omit subscripts if ϕ = 1.

Lemma 5.2 (Taking outer products of SQ-accessible vectors). Given vectors SQφu
(u) ∈

Cm and SQφv
(v) ∈ Cn, we have SQϕ(A) for their outer product A := uv† with ϕ = φuφv

and sqϕ(A) = sqφu
(u) + sqφv

(v).

Proof. We can query an entry A(i, j) = u(i)v(j)† by querying once from u and v. Our
choice of upper bound is Ã = ũṽ†. Clearly, this is an upper bound on uv† and ∥Ã∥2F =
∥ũ∥2∥ṽ∥2 = φuφv∥A∥2F. We have SQ(Ã) in the following manner: Ã(i, ·) = ũ(i)ṽ†, so we
have SQ(Ã(i, ·)) from SQ(ṽ) after querying for ũ(i), and ã = ∥ṽ∥2ũ, so we have SQ(ã)
from SQ(ũ) after querying for ∥ṽ∥.

Using the same ideas as in Lemma 4.6, we can extend sampling and query access of
input matrices to linear combinations of those matrices.

37

Lemma 5.3 (Summing SQ-accessible matrices). Given SQφ(t)(A(t)) ∈ Cm×n and λt ∈ C
for all t ∈ [τ], we have SQϕ(A) ∈ Cm×n for A :=

∑τ
t=1 λtA

(t) with ϕ = τ
∑τ

t=1 φ
(t)∥λtA(t)∥2F
∥A∥2F

and sqϕ(A) =
∑τ

t=1 sqφ(t)(A(t)) (after paying O(
∑τ

t=1 sqφ(t)(A(t))) one-time pre-processing
cost).

5.3 Sketching to estimate matrix products

We now introduce the workhorse of our algorithms: the matrix sketch. Using sampling
and query access, we can generate these sketches efficiently, and these allow us to reduce
the dimensionality of a problem, up to some approximation. Most of the results presented
in this section are known in the classical sketching literature.

Definition 5.4. For a distribution p ∈ Rm, we say that a matrix S ∈ Rs×m is sampled
according to p if each row of S is independently chosen to be ei/

√
s · p(i) with probability

p(i), where ei is the vector that is one in the ith position and zero elsewhere.
We call S an importance sampling sketch for A ∈ Cm×n if it is sampled according

to A’s row norms a, and we call S a ϕ-oversampled importance sampling sketch if it is
sampled according to the bounding row norms from SQϕ(A), ã (or, more generally, from
a ϕ-oversampled importance sampling distribution of a).

One should think of S as a description of how to sketch A down to SA. In the standard
algorithm setting, computing an importance sampling sketch requires reading all of A,
since we need to sample from Da. If we have SQϕ(A), though, we can efficiently create a
ϕ-oversampling sketch S in O(s sqϕ(A)) time: for each row of S, we pull a sample from ã,
and then compute

√
ã(i). After finding this sketch S, we have an implicit description of

SA: it is a normalized multiset of rows of A, so we can describe it with the row indices
and corresponding normalization, (i1, c1), . . . , (is, cs).

Further, we can chain sketches using the lemma below, which shows that from SQϕ(A),
we have SQ≤2ϕ((SA)

†), under a mild assumption on the size of the sketch S. This can be
used to find a sketch T † of (SA)†. The resulting expression SAT is small enough that we
can compute functions of it in time independent of dimension, and so will be key for us.
When we discuss sketching A down to SAT , we are referring to the below lemma for the
method of sampling T .

Lemma 5.5. Consider SQφ(A) ∈ Cm×n and S ∈ Rr×m sampled according to ã, described
as pairs (i1, c1), . . . , (ir, cr). If r ≥ 2φ2 ln 2

δ
, then with probability ≥ 1−δ, we have SQϕ(SA)

and SQϕ((SA)
†) for some ϕ satisfying ϕ ≤ 2φ. If φ = 1, then for all r, we have SQ(SA)

and SQ((SA)†).
The runtimes for SQϕ(SA) are sq(SA) = sq(A). The runtimes for SQϕ((SA)

†) are
sq((SA)†) = r sq(A).

Proof. We will only prove this for φ = 1. We have SQ(SA). Because the rows of SA
are rescaled rows of A, we have SQ access to them from SQ access to A. Because
∥SA∥2F = ∥A∥2F and ∥[SA](i, ·)∥2 = ∥A∥2F/r, we have SQ access to the vector of row norms
of SA (pulling samples simply by pulling samples from the uniform distribution).

We have SQ((SA)†). (This proof is similar to one from [FKV04].) Since the rows of
(SA)† are length r, we can respond to SQ queries to them by reading all entries of the
row and performing some linear-time computation. ∥(SA)†∥2F = ∥A∥2F, so we can respond
to a norm query by querying the norm of A. Finally, we can sample according to the row

38

norms of (SA)† by first querying an index i ∈ [r] uniformly at random, then outputting
the index j ∈ [n] sampled from [SA](i, ·) (which we can sample from because it is a row of
A). The distribution of the samples output by this procedure is correct: the probability
of outputting j is

1

r

r∑
i=1

|[SA](i, j)|2

∥[SA](i, ·)∥2
=

r∑
i=1

|[SA](i, j)|2

∥SA∥2F
=
∥[SA](·, j)∥2

∥SA∥2F
.

We will show below that SA can be used in place of A in matrix products. We begin
with a fundamental observation: given sampling and query access to a matrix A, we can
approximate the matrix product A†B by a sum of rank-one outer products. We formalize
this with two variance bounds, which we can use together with Chebyshev’s inequality.

Lemma 5.6 (Asymmetric matrix multiplication to Frobenius norm error, [DKM06,
Lemma 4]). Consider X ∈ Cm×n, Y ∈ Cm×p, and take S ∈ Rr×m to be sampled according
to p ∈ Rm a ϕ-oversampled importance sampling distribution from X or Y . Then,

E[∥X†S†SY −X†Y ∥2F] ≤
ϕ

r
∥X∥2F∥Y ∥2F

and E
[r∑
i=1

∥[SX](i, ·)∥2∥[SY](i, ·)∥2
]
≤ ϕ

r
∥X∥2F∥Y ∥2F.

Proof. To show the first equation, we use that E[∥X†S†SY −X†Y ∥2F] is a sum of variances,
one for each entry (i, j), since E[X†S†SY −XY] is zero in every entry. Furthermore, for
every entry (i, j), the matrix expression is the sum of r independent, mean-zero terms,
one for each row of S:

[X†S†SY −XY](i, j) =
r∑
s=1

(
[SX](s, i)†[SY](s, j)− 1

r
[X†Y](i, j)

)
.

So, we can use standard properties of variances to conclude that

E[∥X†S†SY −X†Y ∥2F] = r · E[∥[SX](1, ·)†[SY](1, ·)− 1
r
X†Y ∥2F]

≤ r · E[∥[SX](1, ·)†[SY](1, ·)∥2F] = r

m∑
i=1

p(i)
∥X(i, ·)†Y (i, ·)∥2F

r2p(i)2

=
1

r

m∑
i=1

∥X(i, ·)∥2∥Y (i, ·)∥2

p(i)
≤ ϕ

r
∥X∥2F∥Y ∥2F.

The second other inequality follows by the same computation:

E
[r∑
i=1

∥[SX](i, ·)∥2∥[SY](i, ·)∥2
]
= r · E[∥[SX](1, ·)∥2∥[SY](1, ·)∥2] ≤ ϕ

s
∥X∥2F∥Y ∥2F.

The above result shows that, given SQ(X), X†Y can be approximated by a sketch
with constant failure probability. If we have SQ(X) and SQ(Y), we can make the failure
probability exponentially small.16

16There are also versions of this statement for operator norm [BT24, Theorem 5.5].

39

Lemma 5.7 (Approximating matrix multiplication to Frobenius norm error; corollary
of [DKM06, Theorem 1]). Consider X ∈ Cm×n, Y ∈ Cm×p, and take S ∈ Rr×m to be
sampled according to q := q1+q2

2
, where q1, q2 ∈ Rm are ϕ1, ϕ2-oversampled importance

sampling distributions from x, y, the vector of row norms for X, Y , respectively. Then S
is a 2ϕ1, 2ϕ2-oversampled importance sampling sketch of X, Y , respectively. Further,

Pr
[
∥X†S†SY −X†Y ∥F <

√
8ϕ1ϕ2 log 2/δ

r
∥X∥F∥Y ∥F

]
> 1− δ.

Remark 5.8 (Taking products of SQ-accessible matrices). Lemma 5.7 implies that, given
SQϕ1(X) and SQϕ2(Y), we can get SQϕ(M) for M a sufficiently good approximation
to X†Y , with ϕ ≤ ϕ1ϕ2

∥X∥2F∥Y ∥2F
∥M∥2F

. This is an approximate extensibility property for
oversampling and query access under matrix products.

Given the above types of accesses, we can compute the sketch S necessary for Lemma 5.7
by taking p = Dx̃ and q = Dỹ), thereby finding a desired M := X†S†SY . We can compute
entries of M with only r queries each to X and Y , so all we need is to get SQ(M̃) for M̃
the appropriate bound. We choose |M̃(i, j)|2 := r

∑r
ℓ=1 |[SX̃](ℓ, i)†[SỸ](ℓ, j)|2; showing

that we have SQ(M) follows from the proofs of Lemmas 5.2 and 5.3, since M is simply a
linear combination of outer products of rows of X̃ with rows of Ỹ . Finally, this bound
has the appropriate norm. Notating the rows sampled by the sketch as s1, . . . , sr, we have

∥M̃∥2F = r
r∑
ℓ=1

∥[SX̃](ℓ, ·)∥2∥[SỸ](ℓ, ·)∥2 = r
r∑
ℓ=1

∥X̃(sℓ, ·)∥2∥Ỹ (sℓ, ·)∥2

r2(∥X̃(sℓ,·)∥2
2∥X̃∥2F

+ ∥Ỹ (sℓ,·)∥2
2∥Ỹ ∥2F

)2

≤
r∑
ℓ=1

∥X̃(sℓ, ·)∥2∥Ỹ (sℓ, ·)∥2

r(∥X̃(sℓ,·)∥∥Ỹ (sℓ,·)∥
∥X̃∥F∥Ỹ ∥F

)2
= ∥X̃∥2F∥Ỹ ∥2F = ϕ1ϕ2∥X∥2F∥Y ∥2F.

5.4 General singular value transformation

So far, we have shown extensibility properties of SQ access like that of the block-encoding.
However, as we saw in a problem set, this does not necessarily mean we can efficiently
implement all polynomials. We will now discuss the broad approach for producing
p(SV)(A)b from SQ(A) and SQ(b).

Recall our goal of simulating QSVT: given a matrix SQ(A) ∈ Cm×n, a vector SQ(b) ∈
Cn, and a polynomial p : [−1, 1]→ R, compute a description of a vector y such that ∥y −
p(A)b∥ ≤ ε∥p∥[−1,1]∥b∥. Specifically, we aim for our algorithm to run in poly(∥A∥F, 1ε , d)
time, and our description to be some sparse vector x such that y = Ax, since this allows
us to get SQϕ(y).

Given a degree-d polynomial p given in terms of its Chebyshev coefficients aℓ (i.e.
p(x) =

∑d
ℓ=0 aℓTℓ(x), where Tℓ(x) is the degree ℓ Chebyshev polynomial) and a value

x ∈ [−1, 1], the Clenshaw recurrence computes p(x). Concretely, our recurrence for p odd
(so that aℓ = 0 for ℓ even), is the following.

q(d−1)/2 = q(d+1)/2 = 0

qk = 2(2x2 − 1)qk+1 − qk+2 + 2a2k+1x

p(x) = 1
2
(q0 − q1)

40

The scalar recurrences we discuss lift to computing matrix polynomials in a natural way:

u(d−1)/2 = u(d+1)/2 = 0

uk = 2(2AA† − I)uk+1 − uk+2 + 2a2k+1Ab

p(A)b = 1
2
(u0 − u1)

Each iteration (to get uk from uk+1 and uk+2) can be performed in O(nnz(A)) arithmetic
operations, so this can be used to compute p(A)b in O(d nnz(A)) operations. We would
like to do this approximately in time independent of nnz(A) and n. We begin by sketching
down our matrix and vector: we show that it suffices to maintain a sparse description of
uk of the form uk = Avk where vk is sparse. In particular, we produce sketches S ∈ Cn×s

and T ∈ Ct×m such that

1.
∥∥AS(AS)† − AA†

∥∥ ≤ ε,

2.
∥∥ASS†b− Ab

∥∥ ≤ ε∥b∥,

3.
∥∥TAS(TAS)† − AS(AS)†∥∥ ≤ ε

In the pre-processing phase, we can produce these sketches of size s, t = Õ(
∥A∥2F
ε2

log 1
δ
), and

then compute TAS. Since we assume that the input is in the SQ access model, this can
be done in time independent of dimension. The approximations hold because of improved
versions of Lemma 5.7.

Using these guarantees we can sketch the iterates as follows:

uk = 2(2AA† − I)uk+1 − uk+2 + 2a2k+1Ab

= 4AA†Avk+1 − 2Avk+1 − Avk+2 + 2a2k+1Ab

≈ AS[4(TAS)†(TAS)vk+1 − 2vk+1 − vk+2 + 2a2k+1S
†b].

(38)

Therefore, we can interpret Clenshaw iteration as the recursion on the dimension-
independent term vk ≈ 4(TAS)†(TAS)vk+1−2vk+1−vk+2+2a2k+1S

†b, and then applying
AS on the left to lift it back to m dimensional space. As desired, we can perform the
iteration to produce vk in O(st) = Õ(

∥A∥4F
ε4

log2 1
δ
) time, which is independent of dimension,

at the cost of incurring O(ε(∥vk+1∥+ ∥vk+2∥+ a2k+1∥b∥)) error. To bound the effect of
these per-iteration errors on the final output, we need a stability analysis of the Clenshaw
recurrence. We can prove that this gives a d3ε∥p∥[−1,1]∥b∥ scaling on the final bound, so
we rescale ε by a factor of d2 to get a final runtime of

d
∥A∥4F
(ε/d3)4

log2
1

δ
= d13

∥A∥4F
ε4

log2
1

δ
.

If we allow linear-time pre-processing, this can be improved further by a factor of
ε2/d2 [BT24].

41

Problem Set 5: The power of classical
For this problem set, you’ll need the following result about importance sampling sketches,
strengthening Lemma 5.7 from the lecture notes.

Lemma 5.9 (Approximating matrix multiplication to spectral norm error [RV07, Theo-
rem 3.1]). Suppose we are given A ∈ Rm×n, ε > 0, δ ∈ [0, 1], and S ∈ Rr×n a ϕ-oversampled
importance sampling sketch of A. Then

Pr

[
∥A†S†SA− A†A∥ ≲

√
ϕ2 log r log 1/δ

r
∥A∥∥A∥F

]
> 1− δ.

Problem 5.1 ([CGLLTW22, Lemma 4.9]). Given SQ(A) ∈ Cm×n and ε ∈ (0, 1], we
can form importance sampling sketches S ∈ Rr×m and T † ∈ Rc×n in O(rc sq(A)) time.
Let σi and σ̂i denote the singular values of A and SAT , respectively (where σ̂i = 0 for
i > min(r, c)). How big does our sketch (r × c) need to be for the following property to
hold with probability 0.9? min(m,n)∑

i=1

(σ̂2
i − σ2

i)
2

1/2

≤ ε∥A∥2F. (⋆)

Problem 5.2 ([CGLLTW22, Corollary 6.12]). We now show that the previous problem
implies a dequantization of QPCA [LMR14]. Given a matrix SQ(X) ∈ Cm×n such that
X†X has top k eigenvalues {λi}ki=1, along with a lower bound ν such that λ1, . . . , λk ≥ ν,
compute eigenvalue estimates {λ̂i}ki=1 such that, with probability 0.9,

k∑
i=1

|λ̂i − λi| ≤ ε tr(X†X). (39)

What is the runtime of this classical algorithm?
Bonus: how would you design a quantum algorithm to solve this task? Suppose we

are given a state prep unitary that prepares a purification of ρ = X†X (i.e. the vectorized
version of X), which implies both the ability to prepare ρ and a 1-block encoding of ρ.

Problem 5.3 ([Van11; GL22]). Suppose we are given SQ access to the vector corresponding
to the n-qubit state |ψ⟩ and a description of H = 1

s

∑s
i=1 λaEa, where λa ∈ [−1, 1] and Ea

are Pauli matrices. Show how to estimate ⟨ψ|Hk |ψ⟩ to ε error in poly(n, sk, 1/ε) time.
Bonus: prove you can still perform the above estimate if |ψ⟩ is given as a matrix

product state with polynomial bond dimension, meaning that, for some 2n poly(n)×poly(n)
matrices Ai[0], Ai[1], ψb1···bn = tr(A1[b1] · · ·An[bn]). Here, b1 · · · bn are bits.

42

References
[Aar15] Scott Aaronson. “Read the fine print”. In: Nature Physics 11.4 (2015),

pp. 291–293. doi: 10.1038/nphys3272 (page 28).

[ACQ22] Dorit Aharonov, Jordan Cotler, and Xiao-Liang Qi. “Quantum algorithmic
measurement”. In: Nature Communications 13.1 (Feb. 2022). doi: 10.
1038/s41467-021-27922-0. arXiv: 2101.04634 [quant-ph] (page 32).

[BCCKS17] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. “Exponential improvement in precision for simulating
sparse Hamiltonians”. In: Forum of Mathematics, Sigma 5 (2017), e8. doi:
10.1017/fms.2017.2. arXiv: 1312.1414 [quant-ph] (pages 3, 10, 19).

[BCWW01] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf.
“Quantum fingerprinting”. In: Physical Review Letters 87.16 (Sept. 2001),
p. 167902. doi: 10.1103/physrevlett.87.167902. arXiv: quant- ph/
0102001 [quant-ph] (page 29).

[BT24] Ainesh Bakshi and Ewin Tang. “An improved classical singular value
transformation for quantum machine learning”. In: Proceedings of the 2024
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society
for Industrial and Applied Mathematics, Jan. 2024, pp. 2398–2453. isbn:
9781611977912. doi: 10.1137/1.9781611977912.86. arXiv: 2303.01492
[quant-ph] (pages 1, 39, 41).

[CGLLTW22] Nai-Hui Chia, András Pal Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin
Tang, and Chunhao Wang. “Sampling-based sublinear low-rank matrix
arithmetic framework for dequantizing quantum machine learning”. In:
Journal of the ACM 69.5 (Oct. 2022), pp. 1–72. doi: 10.1145/3549524.
arXiv: 1910.06151 [cs.DS] (pages 1, 35, 42).

[CHM21] Jordan Cotler, Hsin-Yuan Huang, and Jarrod R. McClean. “Revisiting
dequantization and quantum advantage in learning tasks”. 2021. doi:
10.48550/ARXIV.2112.00811. arXiv: 2112.00811 [quant-ph] (page 32).

[Cil+18] Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimil-
iano Pontil, Andrea Rocchetto, Simone Severini, and Leonard Wossnig.
“Quantum machine learning: a classical perspective”. In: Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences
474.2209 (Jan. 2018), p. 20170551. doi: 10.1098/rspa.2017.0551. arXiv:
1707.08561 (page 32).

[CS19] Andrew M. Childs and Yuan Su. “Nearly optimal lattice simulation
by product formulas”. In: Physical Review Letters 123.5 (Aug. 2019),
p. 050503. issn: 1079-7114. doi: 10 .1103 /physrevlett . 123. 050503.
arXiv: 1901.00564 [quant-ph] (page 3).

[CSTWZ21] Andrew M. Childs, Yuan Su, Minh Tran, Nathan Wiebe, and Shuchen
Zhu. “Theory of Trotter error with commutator scaling”. In: Physical
Review X 11.1 (Feb. 2021), p. 011020. issn: 2160-3308. doi: 10.1103/
PhysRevX.11.011020. arXiv: 1912.08854 [quant-ph] (page 3).

43

https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/s41467-021-27922-0
https://doi.org/10.1038/s41467-021-27922-0
https://arxiv.org/abs/2101.04634
https://doi.org/10.1017/fms.2017.2
https://arxiv.org/abs/1312.1414
https://doi.org/10.1103/physrevlett.87.167902
https://arxiv.org/abs/quant-ph/0102001
https://arxiv.org/abs/quant-ph/0102001
https://doi.org/10.1137/1.9781611977912.86
https://arxiv.org/abs/2303.01492
https://arxiv.org/abs/2303.01492
https://doi.org/10.1145/3549524
https://arxiv.org/abs/1910.06151
https://doi.org/10.48550/ARXIV.2112.00811
https://arxiv.org/abs/2112.00811
https://doi.org/10.1098/rspa.2017.0551
https://arxiv.org/abs/1707.08561
https://doi.org/10.1103/physrevlett.123.050503
https://arxiv.org/abs/1901.00564
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1103/PhysRevX.11.011020
https://arxiv.org/abs/1912.08854

[CW12] Andrew M. Childs and Nathan Wiebe. “Hamiltonian simulation using
linear combinations of unitary operations”. In: Quantum Info. Comput.
12.11–12 (Nov. 2012), pp. 901–924. issn: 1533-7146. arXiv: 1202.5822
[quant-ph] (page 3).

[DKM06] P. Drineas, R. Kannan, and M. Mahoney. “Fast Monte Carlo algorithms
for matrices I: approximating matrix multiplication”. In: SIAM Journal
on Computing 36.1 (Jan. 2006), pp. 132–157. doi: 10.1137/s0097539704
442684 (pages 32, 39, 40).

[EJ23] Alan Edelman and Sungwoo Jeong. “Fifty three matrix factorizations: a
systematic approach”. In: SIAM Journal on Matrix Analysis and Appli-
cations 44.2 (Apr. 2023), pp. 415–480. doi: 10.1137/21m1416035. arXiv:
2104.08669 [math.NA] (page 15).

[FKV04] Alan Frieze, Ravi Kannan, and Santosh Vempala. “Fast Monte-Carlo algo-
rithms for finding low-rank approximations”. In: Journal of the ACM 51.6
(Nov. 2004), pp. 1025–1041. doi: 10.1145/1039488.1039494 (page 38).

[GL22] Sevag Gharibian and François Le Gall. “Dequantizing the quantum sin-
gular value transformation: hardness and applications to quantum chem-
istry and the quantum pcp conjecture”. In: Proceedings of the 54th An-
nual ACM SIGACT Symposium on Theory of Computing. STOC 2022.
Rome, Italy: Association for Computing Machinery, 2022, pp. 19–32. isbn:
9781450392648. doi: 10.1145/3519935.3519991 (page 42).

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum ran-
dom access memory”. In: Physical Review Letters 100.16 (2008), p. 160501.
doi: 10.1103/PhysRevLett.100.160501. arXiv: 0708.1879 (page 30).

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum
singular value transformation and beyond: Exponential improvements for
quantum matrix arithmetics”. In: Proceedings of the 51st ACM Symposium
on the Theory of Computing (STOC). ACM, June 2019, pp. 193–204. doi:
10.1145/3313276.3316366. arXiv: 1806.01838 (pages 1, 3, 4, 7, 8, 10–12,
14, 16, 23, 24, 26, 30, 33).

[HHKL21] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao
Low. “Quantum algorithm for simulating real time evolution of lattice
Hamiltonians”. In: SIAM Journal on Computing 52.6 (Jan. 2021), FOCS18-
250-FOCS18–284. issn: 1095-7111. doi: 10.1137/18m1231511. arXiv:
1801.03922 [quant-ph] (page 3).

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algo-
rithm for linear systems of equations”. In: Physical Review Letters 103 (15
Oct. 2009), p. 150502. doi: 10.1103/PhysRevLett.103.150502 (pages 24,
28, 29).

[JR23] Samuel Jaques and Arthur G. Rattew. “QRAM: A survey and critique”.
May 17, 2023. arXiv: 2305.10310 [quant-ph] (page 30).

[JW06] Dominik Janzing and Pawel Wocjan. “Estimating diagonal entries of
powers of sparse symmetric matrices is BQP-complete”. June 27, 2006.
arXiv: quant-ph/0606229 [quant-ph] (page 29).

44

https://arxiv.org/abs/1202.5822
https://arxiv.org/abs/1202.5822
https://doi.org/10.1137/s0097539704442684
https://doi.org/10.1137/s0097539704442684
https://doi.org/10.1137/21m1416035
https://arxiv.org/abs/2104.08669
https://doi.org/10.1145/1039488.1039494
https://doi.org/10.1145/3519935.3519991
https://doi.org/10.1103/PhysRevLett.100.160501
https://arxiv.org/abs/0708.1879
https://doi.org/10.1145/3313276.3316366
https://arxiv.org/abs/1806.01838
https://doi.org/10.1137/18m1231511
https://arxiv.org/abs/1801.03922
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/2305.10310
https://arxiv.org/abs/quant-ph/0606229

[KP17] Iordanis Kerenidis and Anupam Prakash. “Quantum recommendation
systems”. In: Proceedings of the 8th Innovations in Theoretical Computer
Science Conference (ITCS). 2017, 49:1–49:21. doi: 10.4230/LIPIcs.ITCS.
2017.49. arXiv: 1603.08675 (page 28).

[LC17] Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian simulation by
quantum signal processing”. In: Physical Review Letters 118.1 (Jan. 2017),
p. 010501. doi: 10.1103/PhysRevLett.118.010501. arXiv: 1606.02685
[quant-ph] (page 3).

[LC19] Guang Hao Low and Isaac L. Chuang. “Hamiltonian simulation by qubiti-
zation”. In: Quantum 3 (July 2019), p. 163. doi: 10.22331/q-2019-07-
12-163 (pages 3, 10).

[LGZ16] Seth Lloyd, Silvano Garnerone, and Paolo Zanardi. “Quantum algorithms
for topological and geometric analysis of data”. In: Nature Communications
7.1 (Jan. 2016), p. 10138. doi: 10.1038/ncomms10138. arXiv: 1408.3106
(page 28).

[Llo96] Seth Lloyd. “Universal quantum simulators”. In: Science 273.5278 (Aug.
1996), pp. 1073–1078. doi: 10.1126/science.273.5278.1073 (page 3).

[LMR13] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum algo-
rithms for supervised and unsupervised machine learning”. 2013. arXiv:
1307.0411 [quant-ph] (page 30).

[LMR14] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum principal
component analysis”. In: Nature Physics 10.9 (July 2014), pp. 631–633.
doi: 10.1038/nphys3029. arXiv: 1307.0401 [quant-ph] (page 42).

[MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.
“Grand unification of quantum algorithms”. In: PRX Quantum 2 (4 Dec.
2021), p. 040203. doi: 10.1103/PRXQuantum.2.040203. arXiv: 2105.02859
[quant-ph] (pages 10, 11, 29).

[OD21] Davide Orsucci and Vedran Dunjko. “On solving classes of positive-definite
quantum linear systems with quadratically improved runtime in the
condition number”. In: Quantum 5 (Nov. 2021), p. 573. doi: 10.22331/q-
2021-11-08-573. arXiv: 2101.11868 [quant-ph] (page 26).

[Pra14] Anupam Prakash. “Quantum algorithms for linear algebra and machine
learning”. PhD thesis. University of California at Berkeley, 2014. url:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-
211.pdf (pages 30, 32).

[PW94] C. C. Paige and M. Wei. “History and generality of the CS decomposition”.
In: Linear Algebra and Its Applications 208/209 (1994), pp. 303–326. issn:
0024-3795. doi: 10.1016/0024-3795(94)90446-4 (page 15).

[Ral20] Patrick Rall. “Quantum algorithms for estimating physical quantities using
block encodings”. In: Physical Review A 102.2 (Aug. 2020), p. 022408. doi:
10.1103/physreva.102.022408. arXiv: 2004.06832 [quant-ph] (pages 4,
10, 11).

45

https://doi.org/10.4230/LIPIcs.ITCS.2017.49
https://doi.org/10.4230/LIPIcs.ITCS.2017.49
https://arxiv.org/abs/1603.08675
https://doi.org/10.1103/PhysRevLett.118.010501
https://arxiv.org/abs/1606.02685
https://arxiv.org/abs/1606.02685
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1038/ncomms10138
https://arxiv.org/abs/1408.3106
https://doi.org/10.1126/science.273.5278.1073
https://arxiv.org/abs/1307.0411
https://doi.org/10.1038/nphys3029
https://arxiv.org/abs/1307.0401
https://doi.org/10.1103/PRXQuantum.2.040203
https://arxiv.org/abs/2105.02859
https://arxiv.org/abs/2105.02859
https://doi.org/10.22331/q-2021-11-08-573
https://doi.org/10.22331/q-2021-11-08-573
https://arxiv.org/abs/2101.11868
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.pdf
https://doi.org/10.1016/0024-3795(94)90446-4
https://doi.org/10.1103/physreva.102.022408
https://arxiv.org/abs/2004.06832

[RV07] Mark Rudelson and Roman Vershynin. “Sampling from large matrices: an
approach through geometric functional analysis”. In: Journal of the ACM
54.4 (July 2007), 21–es. issn: 0004-5411. doi: 10.1145/1255443.1255449.
url: https://doi.org/10.1145/1255443.1255449 (page 42).

[Sch41] A. C. Schaeffer. “Inequalities of A. Markoff and S. Bernstein for poly-
nomials and related functions”. In: Bull. Amer. Math. Soc. 47 (1941),
pp. 565–579. issn: 0002-9904. doi: 10.1090/S0002-9904-1941-07510-5
(page 25).

[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. “Faster algorithms via approx-
imation theory”. In: Foundations and Trends in Theoretical Computer Sci-
ence 9.2 (2014), pp. 125–210. issn: 1551-305X. doi: 10.1561/0400000065
(page 23).

[Tan19] Ewin Tang. “A quantum-inspired classical algorithm for recommendation
systems”. In: Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing - STOC 2019. ACM Press, 2019, pp. 217–228.
doi: 10.1145/3313276.3316310. arXiv: 1807.04271 [cs.IR] (pages 33,
36).

[Tan22] Ewin Tang. “Dequantizing algorithms to understand quantum advantage in
machine learning”. In: Nature Reviews Physics 4.11 (Sept. 2022), pp. 692–
693. doi: 10.1038/s42254-022-00511-w (page 1).

[Tan23] Ewin Tang. “Quantum machine learning without any quantum”. En-
glish. PhD thesis. 2023, p. 169. isbn: 9798380327909. url: https://
www.proquest.com/dissertations-theses/quantum-machine-learning-
without-any/docview/2864097401/se-2 (page 1).

[TB97] Lloyd N. Trefethen and David Bau III. Numerical linear algebra. Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1997, pp. xii+361. isbn: 0-89871-361-7. doi: 10.1137/1.9780898719574
(page 26).

[Tre19] Lloyd N. Trefethen. Approximation theory and approximation practice,
extended edition. Extended edition [of 3012510]. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 2019, pp. xi+363. isbn: 978-1-
611975-93-2. doi: 10.1137/1.9781611975949 (pages 1, 20–22, 27).

[TT24] Ewin Tang and Kevin Tian. “A CS guide to the quantum singular value
transformation”. In: 2024 Symposium on Simplicity in Algorithms (SOSA).
Society for Industrial and Applied Mathematics, Jan. 2024, pp. 121–
143. isbn: 9781611977936. doi: 10.1137/1.9781611977936.13. arXiv:
2302.14324 [quant-ph] (pages 1, 14, 15, 17, 23, 24).

[Van11] Maarten Van den Nest. “Simulating quantum computers with probabilistic
methods”. In: Quantum Information and Computation 11.9&10 (Sept.
2011), pp. 784–812. issn: 1533-7146. doi: 10.26421/qic11.9-10-5. arXiv:
0911.1624 [quant-ph] (page 42).

[Vos91] Michael D. Vose. “A linear algorithm for generating random numbers with
a given distribution”. In: IEEE Transactions on Software Engineering 17.9
(1991), pp. 972–975. doi: 10.1109/32.92917 (page 35).

46

https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1090/S0002-9904-1941-07510-5
https://doi.org/10.1561/0400000065
https://doi.org/10.1145/3313276.3316310
https://arxiv.org/abs/1807.04271
https://doi.org/10.1038/s42254-022-00511-w
https://www.proquest.com/dissertations-theses/quantum-machine-learning-without-any/docview/2864097401/se-2
https://www.proquest.com/dissertations-theses/quantum-machine-learning-without-any/docview/2864097401/se-2
https://www.proquest.com/dissertations-theses/quantum-machine-learning-without-any/docview/2864097401/se-2
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.1137/1.9781611977936.13
https://arxiv.org/abs/2302.14324
https://doi.org/10.26421/qic11.9-10-5
https://arxiv.org/abs/0911.1624
https://doi.org/10.1109/32.92917

[Woo14] David P. Woodruff. “Sketching as a tool for numerical linear algebra”.
In: Foundations and Trends® in Theoretical Computer Science 10.1–2
(2014), pp. 1–157. issn: 1551-305X. doi: 10.1561/0400000060 (page 32).

47

https://doi.org/10.1561/0400000060

	Preface
	Introducing the block-encoding
	Block-encodings
	Extensibility properties of block-encodings
	The ``fundamental theorem'' of block-encodings
	Wielding the block-encoding

	Problem Set 1: The block-encoding
	Proving QSVT
	Quantum signal processing (QSP)
	Lifting with the CS decomposition
	Proving QSVT

	Problem Set 2: The QSVT
	Approximating many things by polynomials
	Chebyshev polynomials and properties
	Approximating functions from Chebyshev series
	Lower bounds on polynomial approximation

	Problem Set 3: Polynomial approximation
	Introducing quantum-inspired linear algebra
	A vignette: The swap test, and what's in an access model
	Extensibility properties

	Problem Set 4: Dequantizing QSVT
	Quantum-inspired algorithms: sketching and beyond
	Another vignette: Tools for the matrix-vector product
	Oversampling and query access to matrices
	Sketching to estimate matrix products
	General singular value transformation

	Problem Set 5: The power of classical

