
Quantum and quantum-inspired linear algebra:
Some problem set solutions

Ewin Tang Christopher Kang

July 24–28, 2023

These are solutions to some of the problem sets in a 5-lecture mini-course I taught at
the 2023 PCMI graduate summer school. These were written up during the week and
haven’t been edited since, so: beware of errors!

Contents
Problem Set 1: The block-encoding 2

Problem Set 2: The QSVT 5

Problem Set 3: Polynomial approximation 7

Problem Set 4: Dequantizing QSVT 10

Problem Set 5: The power of classical 12

1

Problem Set 1: The block-encoding
Problem 1.1 (Taking tensor products of block-encodings). Let U and V be Q-block
encodings of A and B, respectively. Show how to get a Q-block-encoding of A⊗B.

Solution. U ⊗ V is a block-encoding of A⊗B.

Problem 1.2 (Extensibility properties). Prove Corollary 1.11 of the lecture notes. Specif-
ically, show that the two extensibility properties allow us to convert a Q-block encoding
of A to a nQ-block encoding of p(SV)(A).

Solution. We can construct a kQ-block encoding of m(SV)
k (A), for mk(x) = xk. The

problem here is that the naïve approach – producing xn and then adding with xn−1 –
would require O(n2Q) complexity.

Instead, via Horner’s rule, we may rewrite the polynomial in the following form:

a0 + x(a1 + x(a2 + ...+ x(an−1 + xan))) (1)

Precisely the sum of products of polynomials. It can be shown that the coefficients can
be structured carefully so that they never exceed 1.

Solution. [Angus Lowe’s solution] Consider the following preparation unitaries:

PREP |0⟩ =
∑
k

√
λk |k⟩ (2)

SELECT =
n∑

k=0

|k⟩ ⟨k| ⊗ Ak (3)

Then, the application of PREP† · SELECT · PREP precisely implements a desired block
encoding with λk chosen appropriately. This is a version of linear combinations of unitaries
seen in Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity.
SELECT can be implemented efficiently via using a binary encoding in the ancilla and
using log2 n controlled-A2j gates.

Problem 1.3 (Extensibility properties do not suffice). Let p(x) =
∑n

k=0 akx
k be a

polynomial whose coefficients satisfy
∑

|ak| ≤ 1. Show that p(x) cannot approximate
sin(100x) for any choice of n. That is, show that there is some x ∈ [−1, 1] such that

|p(x)− sin(100x)| ≥ 0.01.

We will see in Lecture 3 that sin(100x) can in fact be approximated by a low-degree
polynomial; it’s just that this class of polynomials doesn’t suffice.

Solution. The key idea is straightforward: we want to show that any polynomial p(x)
has derivative p′(x) that differs significantly from d

dx
sin(100x) and use this to produce a

contradiction.
First, consider x = − π

200
, x = π

200
. Then, sin(100x) = ±1 at those points. Thus, by the

Mean Value Theorem, p must at some point attain a derivative exceeding the following
value:

0.99−−0.99
π
200

−− π
200

=
200 · 0.99

π
≥ 50 (4)

2

https://arxiv.org/abs/1805.03662

Now, consider the maximum derivative attainable by the polynomial. Set p(x) =∑n
k=0 akx

k with
∑

|ak| = 1. Then,

|p′(x)| ≤

∣∣∣∣∣
d∑

k=1

ak · kxk−1

∣∣∣∣∣ (5)

≤
n∑

k=1

|ak|k|x|k−1 (6)

≤
n∑

k=1

k|x|k−1 (7)

Numerics can show that this function lies far below 50 for x ∈ [± π
200

].
Thus, for the polynomial to observe our requirements, it must attain a derivative of at

least 50 at some point. However, on this interval, it has derivative far less. Thus, we have
obtained a contradiction and p does not exist.

Solution. [Zachary Stier’s solution] Suppose we have a polynomial p(x) = a0 +
∑n

k=1 akx
k.

Then, because |p(0)| ≤ 1
100

by our constraint, we need |a0| ≤ 1
100

. Then, observe that, on
x ∈ [0, 1/2]:

p(x) ≤ |a0|+
n∑

k=1

|ak||x|k (8)

≤ 1

100
+

1

2
(9)

Thus, the maximum attainable value of p(x) is 51
100

. However, x = π
200

would mean
sin(100x) = 1, so p(x) and sin(100x) differ from a quantity much greater than 0.01, a
contradiction.

Problem 1.4 (Oblivious amplitude amplification). QSVT is a unifying technique which
includes many major quantum algorithms, including amplitude amplification [MRTC21].
In this problem, we show that Oblivious Amplitude Amplification (OAA), as described in
[BCCKS17, Lemma 3.6], can be written in our block-encoding framework.

Identify the block-encoding within the aforementioned unitary. What polynomial
would effect the same transformation as described in [BCCKS17, Lemma 3.6]?

Solution. The state preparation unitary mentioned in [BCCKS17] performs the following
transformation:

U |0⟩µ |ψ⟩ = sin θ |0⟩µ V |ψ⟩+ |Φ⊥⟩ (10)

Where |Φ⊥⟩ is an orthogonal component such that ⟨0|µ ⊗ I |Φ⊥⟩ = 0. Then, U is a
block-encoding of sin θV , i.e.:

U =

[
sin θV ·

· ·

]
(11)

In fact, the net unitary we would like to implement is the following:

SℓU =

[
sin(2ℓ+ 1)θV ·

· ·

]
(12)

3

Thus, we see that SℓU actually implements a polynomial (Chebyshev polynomial) taking
sin θ to sin(2ℓ+ 1). However, we need not use Chebyshev polynomials if we may tolerate
a different construction. In particular, sin θ will typically be known, so implementing any
polynomial taking the specific value of sin θ to sin(2ℓ+ 1)θ will suffice.

Remark 1.1. See [Ral20] for more information on how to get block-encodings of density
matrices and observables, and how to use this to estimate physical quantities like expecta-
tions of Gibbs states. See [BCCKS17] for further discussion of Hamiltonian simulation,
placing it in the context of the more general problem of understanding the “fractional query
model”, “discrete query model”, and “continuous query model”. See [LC19] (the original
paper) or [GSLW19] for a more thorough explanation of the Hamiltonian simulation
algorithm.

4

Problem Set 2: The QSVT
Problem 2.1 (When will my reflection show who I am inside?). QSVT achieves poly-
nomials by interspersing phase operators with signal rotation operators. However, these
rotation operators may look different in the literature. Consider two potential operators,
W (x), R(x), with the following matrix forms:

W (x) =

(
x i

√
1− x2

i
√
1− x2 x

)
R(x) =

(
x

√
1− x2√

1− x2 −x

)
(13)

Where W is the rotation operator while R is the reflection operator. We can define two
different kinds of QSP, QSPW (Φ, x) and QSPR(Φ, x) for these two different operators.
For example,

QSPW (Φ, x) :=
(n∏

j=1

eiϕjσzW (x)
)
eiϕ0σz .

Suppose we have some series of phases Φ = (ϕ0, . . . , ϕn) such that QSPW (Φ, x) forms
a desired polynomial p(x). Can we find a Φ′ such that QSPR(Φ

′, x) performs the same
polynomial? If so, find a formula for Φ′ in terms of Φ; if not, prove why.

Solution. (From [MRTC21, Appendix A.2]) We can notice that

W (x) =

(
1

i

)(
x

√
1− x2√

1− x2 −x

)(
1

i

)
= eiπ/2

(
e−iπ/4

eiπ/4

)(
x

√
1− x2√

1− x2 −x

)(
e−iπ/4

eiπ/4

)
= eiπ/2e−iπ

4
σzR(x)e−iπ

4
σz

So, if Φ = (ϕ0, ϕ1, . . . , ϕn) is the phase sequence forW , then Φ−(π/4, π/2, π/2, . . . , π/2, π/4−
dπ/2) is the phase sequence for R.

Problem 2.2 (Perfectly balanced, as all things should be). The Chebyshev polynomials
of the first and second kind are functions such that, for all z ∈ C,

Tn(
1
2
(z + z−1)) = 1

2
(zn + z−n)

Un(
1
2
(z + z−1)) = (zn+1 − z−(n+1))/(z − z−1)

Prove that Tn and Un are polynomials. Then, prove that

Tn(x)
2 + (1− x2)Un−1(x)

2 = 1. (14)

Just a little more and we have a proof that these can be used in QSP/QSVT!

Problem 2.3 (They’re the same picture!). Return to [BCCKS17, Lemma 3.6]. What are
the angles of the phase operators? What are the polynomials that are being computed
with these phase operators? (A recursive definition is fine.)

Solution. The key idea here is that the phase unitaries applied take the form 2Π− I for
some projector Π. Thus, this is equivalent to performing a rotation of ϕ = π

2
. They are

creating a Chebyshev polynomial taking sin θ 7→ sin(2ℓ+ 1)θ.

5

Problem 2.4 (Block-encodings for any matrix). Given a matrix A ∈ Cd×d such that
∥A∥ ≤ 1, show there exists a unitary U ∈ C2d×2d such that U is a block-encoding of A:

U =

(
A ·
· ·

)
.

Prove that 2d is tight, i.e., there is some matrix A such that any unitary with A as a
submatrix must be size at least 2d× 2d. Note: this is true for non-square A as well, but
the argument might get more annoying.

Solution. Consider the singular value decomposition A = V DW †. Then(
V

I

)(
D

√
1−D2

√
1−D2 −D

)(
W †

I

)
is a product of unitary matrices, where the top-left block is A. For A non-square, this
works via mimicking the structure CS decomposition. If A is the zero matrix, then we
need U to be size 2d× 2d; smaller matrices containing A must have linearly dependent
columns.

(Alternative solution from [AA11, Lemma 29]) Since A†A is a positive semi-definite
matrix such that ∥A†A∥ ≤ 1, then I − A†A is also positive semi-definite, so it has a
Hermitian square root I − A†A = B2 = B†B. Since A†A+B†B = I,(

A
B

)†(
A
B

)
= I,

so this stacked 2d× d matrix has orthonormal columns. Consequently, we can complete it
to a 2d× 2d unitary matrix.

Problem 2.5 (It’s just a phase). In our QSVT algorithm, we needed to apply gates of
the form eiϕ(2Π−I), where Π = (|0⟩⊗a ⟨0|⊗a)⊗ I. How do you implement these?

Solution. A single ancilla coupled with Π-controlled nots are sufficient.
A Π-controlled not takes the following form:

CΠNOT = Π⊗X + (I − Π)⊗ I (15)

So that CΠNOTe
iϕZCΠNOT when applied to an ancilla of |0⟩ is precisely the required

circuit. (See [MRTC21] for more circuits).

6

Problem Set 3: Polynomial approximation
Problem 3.1 (Polynomial approximation of monomials). First, compute the Chebyshev
coefficients of the monomial m(n)(x) = xn. (Doing this via Tk(12(z + z−1)) = 1

2
(zn + z−n)

formulation may be easiest.) How small can k be such that the Chebyshev truncation
m

(n)
k a good approximation of m(n):

∥m(n) −m
(n)
k ∥[−1,1] ≤ ε?

Solution. Substituting in x = 1
2
(z + z−1), we get that

xn =
1

2n
(z + z−1)n (16)

=
1

2n

n∑
k=0

(
n

k

)
zk−(n−k) (17)

=
1

2n

n∑
k=0

(
n

k

)
z2k−n (18)

There’s some annoyance involving parity. If n is odd, then

=
1

2n

(⌊n/2⌋∑
k=0

(
n

k

)
z2k−n +

n∑
k=⌊n/2⌋+1

(
n

k

)
z2k−n

)
(19)

=
1

2n

n∑
k=⌊n/2⌋+1

(
n

k

)
2T2k−n(x) (20)

=
1

2n−1

⌊n/2⌋∑
k=0

(
n

k

)
Tn−2k(x) (21)

If n is even, then we get a constant term.

=
1

2n

((n

n/2

)
+

n/2−1∑
k=0

(
n

k

)
z2k−n +

n∑
k=n/2+1

(
n

k

)
z2k−n

)
(22)

=
1

2n

((n

n/2

)
+

n∑
k=n/2+1

(
n

k

)
2T2k−n(x)

)
(23)

=
1

2n

((n

n/2

)
+

n/2−1∑
k=0

(
n

k

)
2Tn−2k(x)

)
(24)

Roughly, the Chebyshev coefficient corresponding to aℓ is 21−n
(

n
(n−ℓ)/2

)
, up to parity issues.

So, for the truncation m(n)
2ℓ , the tail bound is (again, morally),

m
(n)
2ℓ =

∑
k≥ℓ

(
n

n/2− ℓ

)
= Pr[Bin(n, 1/2) ≤ n/2− ℓ]. (25)

By a Chernoff bound, it suffices to choose ℓ = O(
√
n log(1/ε)). See [SV14] for a more

careful version of this argument.

7

Problem 3.2 (Chebyshev interpolation [Tre19]). The Chebyshev interpolant of a function
f , denoted pn, is the unique degree-n polynomial such that pn(xj) = f(xj) for all
xj = cos(jπ/n), j = 0, 1, . . . , n. Prove that1

∥f(x)− pn(x)∥[−1,1] ≤ 2
∑
ℓ≥n

|aℓ|.

Hint: when is Tk(xj) = Tℓ(xj) for all points {xj}?

Solution. We will build the Chebyshev interpolant of the function and identify the maximal
error associated with this interpolant.

First, a detour: observe that the following Chebyshev polynomials have the same value
for x = z+z−1

2
for z2νn = 1 for any integer ν.

Tm, T2n−m, T2n+m, T4n−m, T4n+m, ... (26)

This follows from the observation that Tk(z+z−1

2
) = zk+z−k

2
([Tre19, Theorem 4.1]).

Now, consider the Chebyshev series associated with f :

f(x) =
∞∑
k=0

akTk(x) (27)

Then, to produce an interpolant, we need to enforce the condition that pn(xj) = f(xj).
This can be done by recognizing that Tk(x), Tj(x) coincide for specific values of k, j
depending on x. Then, at these values, you could rewrite the function as follows:

f(xj) =
n∑

k=0

ck
∑
m∈Sk

Tm(xj) (28)

Where Sk are the set of Chebyshev polynomials taking the same value at xj. We’ve
already defined this set above, and can find an explicit form for ck as follows ([Tre19,
Theorem 4.2]):

c0 = a0 + a2n + a4n + ... (29)
cn = an + a3n + ... (30)
ck = ak + (ak+2n + a−k+2n) + (ak+4n + a−k+4n) + ... (31)

Therefore, the error in a nth degree truncation can be seen as follows:

f(x)− pn(x) =
∞∑
k=0

akTk(x)−
n∑

k=0

ckTk(x) (32)

=
∞∑

k=n+1

ak(Tk(x)− Tm(x)) (33)

≤
∞∑

k=n+1

2|ak| (34)

1Recall that our approximation results used that ∥f(x) − fn(x)∥[−1,1] ≤
∑

ℓ≥n|aℓ|. So, Chebyshev
interpolants pn give the same results as Chebyshev truncations fn, up to a constant factor. Interpolants
have the advantage of being computable in n+ 1 function evaluations.

8

For m = m(k, n). The second step follows because each of the terms between 0 ≤ k ≤ n
cancel directly (each ck contains an ak within it), and the terms k ≥ n+ 1 occur because
the coefficient of am within some ck is still unmodified, just associated with a lower order
Chebyshev polynomial Tm(k,n) which coincides with Tk at the provided values of xj.

Problem 3.3 (Jackson theorems, [Tre19]). Let f : [−1, 1] → R be absolutely continuous
and suppose f is of bounded variation, meaning that

∫ 1

−1
|f ′(x)|dx ≤ V . Then show that

the Chebyshev coefficients of f satisfy

|ak| ≤
2V

πk
.

Solution. See [Tre19, Theorem 7.1]; it’s integration by parts on the integral equation for
ak.

Problem 3.4 (Optimal polynomial approximations; upper and lower bounds). Consider
a function f : [−1, 1] → R with a Chebyshev expansion f(x) =

∑
k≥0 akTk(x). Prove that(1

2

∞∑
k=n+1

a2k

) 1
2 ≤ min

p∈R[x]
deg p=n

∥f(x)− p(x)∥[−1,1] ≤
∞∑

k=n+1

|ak|

For what kind of Chebyshev coefficient decay is this characterization tight up to constants?

Solution. We follow [AA22, Proposition 2.2], but get an improved bound. The upper
bound follows by taking p(x) = fn(x). The lower bound follows by bounding the max
by the integral. Let p(x) =

∑n
k=0 bkTk(x) be a degree-n polynomial. Take bk = 0 for all

k > n. Then

∥f(x)− p(x)∥[−1,1] ≥
1

2π

∫ π

−π

(f(cos(θ))− p(cos(θ)))2dθ

≥ 1

2π

∫ π

−π

(∞∑
k=0

(ak − bk)Tk(cos(θ))
)2

dθ

≥ 1

2π

∫ π

−π

(∞∑
k=0

(ak − bk) cos(kθ))
)2

dθ

This is expression is the squared norm of the function f(x)− p(x) under the inner product
where cos(kθ)’s are orthogonal. So, this gives us the sum of squares of the coefficients.

=
1

2π

∞∑
k=0

∞∑
ℓ=0

(ak − bk)(aℓ − bℓ)

∫ π

−π

cos(kθ) cos(ℓθ)dθ

=
1

2π

∞∑
k=0

(ak − bk)
2π

≥ 1

2

∞∑
k=n+1

(ak − bk)
2

=
1

2

∞∑
k=n+1

a2k.

9

Problem Set 4: Dequantizing QSVT
Before you begin, recall the definitions of sampling and query access for vectors and ma-
trices (SQ(v), SQ(A)) and oversampling and query access (SQϕ(v), SQϕ(A)) [CGLLTW22,
Definition 3.2]. Below, time complexities are in the word RAM model: basically, assume
that reading input numbers, and performing operations on those numbers, cost O(1).

Problem 4.1 (Errare humanum est...). Suppose we have SQϕu
(u), SQϕv

(v) for vectors
u, v. Show that we have SQϕ(A) for A := uv† and ϕ = ϕuϕv with cost sqϕ(A) =
sqϕu

(u) + sqϕv
(v).

Solution. The sampling algorithm is straightforward:

1. Query an index iu of u via SQϕu
(u)

2. Query an index iv of v via SQϕv
(v)

3. Return u(iu) · v(iv)†

This clearly has complexity in SQϕu
(u)+SQϕv

(v).. How can we show that this is ϕ = ϕuϕv

oversampling? Observe that any row of the oversampled matrix Ã takes the form
Ã(i, ·) = ũ(i)ṽ† so that Ã = ũṽ†. Thus, ∥Ã∥2F = ∥ũ∥2∥ṽ∥2 = ϕuϕv∥u∥2∥v∥2 = ϕuϕv∥A∥2F

Problem 4.2 (...sed perseverare (non?) diabolicum.). Suppose we are given a matrix
A ∈ Cm×m with at most s non-zero entries per row, and suppose all entries are bounded
by c. We are given this matrix as a list of non-zero entries (i, j, A(i, j)). Show how to
perform SQϕ(A) queries for ϕ = c2 sm

∥A∥2F
with sqϕ(A) = s.2 This means that we can run

“dequantized” algorithms on sparse matrices with condition number κ; why doesn’t this
imply that QSVT admits no exponential speedup for sparse matrices?

Solution. For example, for SQ(ã) we can set ã(i) := c
√
s, and for Ã(i, ·) we use the vector

with entries c at the non-zeros of A(i, ·) (potentially adding some “dummy” zero locations
to have exactly s non-zeroes).

Note that similar sparse-access assumptions are often seen in the QML and Hamiltonian
simulation literature [HHL09]. Also, if A is not much smaller than we expect, then ϕ can
be independent of dimension. For example, if A has exactly s non-zero entries per row
and |A(i, j)| ≥ c′ for non-zero entries, then ϕ ≤ (c/c′)2.

Problem 4.3 (The alias method [Vos91]). Let p = (p1, . . . , pm) be a set of probabilities,
so pi ≥ 0 and

∑
pi = 1. Suppose also that all of the pi’s are described in binary with O(1)

bits.

1. Suppose we are given a uniformly random number x ∈ [0, 1] as a stream of random
bits. Show how to sample i ∈ [m] such that Pr[sample ℓ] = pℓ in O(m) operations.

2. Suppose we are given p = (p1, . . . , pm) in the following form: we get a list of m
probability distributions d1, . . . , dm such that 1

m
(d1 + · · ·+ dm) = p and every di is

supported on at most two outcomes. Show that we can sample i ∈ [m] according to
p in O(1) time.

2Hint: We immediately have query access to A. What’s a good upper bound that’s easy to sample
from?

10

3. Prove that we can convert any distribution p into the form described above. Prove
that we can do this in O(m) time.3

3This implies that, if we get time to pre-process, we can get a data structure such that we can respond
to SQ(v) queries in O(1) time (in the word RAM access model).

11

Problem Set 5: The power of classical
For this problem set, you’ll need the following result about importance sampling sketches,
strengthening Lemma 5.9 from the lecture notes.

Lemma 5.2 (Approximating matrix multiplication to spectral norm error [RV07, Theo-
rem 3.1]). Suppose we are given A ∈ Rm×n, ε > 0, δ ∈ [0, 1], and S ∈ Rr×n a ϕ-oversampled
importance sampling sketch of A. Then

Pr

[
∥A†S†SA− A†A∥ ≲

√
ϕ2 log r log 1/δ

r
∥A∥∥A∥F

]
> 1− δ.

Problem 5.1 ([CGLLTW22, Lemma 4.9]). Given SQ(A) ∈ Cm×n and ε ∈ (0, 1], we
can form importance sampling sketches S ∈ Rr×m and T † ∈ Rc×n in O(rc sq(A)) time.
Let σi and σ̂i denote the singular values of A and SAT , respectively (where σ̂i = 0 for
i > min(r, c)). How big does our sketch (r × c) need to be for the following property to
hold with probability 0.9? min(m,n)∑

i=1

(σ̂2
i − σ2

i)
2

1/2

≤ ε∥A∥2F. (⋆)

Problem 5.2 ([CGLLTW22, Corollary 6.12]). We now show that the previous problem
implies a dequantization of QPCA [LMR14]. Given a matrix SQ(X) ∈ Cm×n such that
X†X has top k eigenvalues {λi}ki=1, along with a lower bound ν such that λ1, . . . , λk ≥ ν,
compute eigenvalue estimates {λ̂i}ki=1 such that, with probability 0.9,

k∑
i=1

|λ̂i − λi| ≤ ε tr(X†X). (35)

What is the runtime of this classical algorithm?
Bonus: how would you design a quantum algorithm to solve this task? Suppose we

are given a state prep unitary that prepares a purification of ρ = X†X (i.e. the vectorized
version of X), which implies both the ability to prepare ρ and a 1-block encoding of ρ.

Problem 5.3 ([Van11; GL22]). Suppose we are given SQ access to the vector corresponding
to the n-qubit state |ψ⟩ and a description of H = 1

s

∑s
i=1 λaEa, where λa ∈ [−1, 1] and Ea

are Pauli matrices. Show how to estimate ⟨ψ|Hk |ψ⟩ to ε error in poly(n, sk, 1/ε) time.
Bonus: prove you can still perform the above estimate if |ψ⟩ is given as a matrix

product state with polynomial bond dimension, meaning that, for some 2n poly(n)×poly(n)
matrices Ai[0], Ai[1], ψb1···bn = tr(A1[b1] · · ·An[bn]). Here, b1 · · · bn are bits.

12

References
[AA11] Scott Aaronson and Alex Arkhipov. “The computational complexity of

linear optics”. In: Proceedings of the forty-third annual ACM symposium on
Theory of computing. ACM, June 2011. doi: 10.1145/1993636.1993682.
arXiv: 1011.3245 [quant-ph] (page 6).

[AA22] Amol Aggarwal and Josh Alman. “Optimal-degree polynomial approx-
imations for exponentials and gaussian kernel density estimation”. In:
37th Computational Complexity Conference, CCC 2022. Vol. 234. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 22:1–22:23. doi:
10.4230/LIPIcs.CCC.2022.22 (page 9).

[BCCKS17] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. “Exponential improvement in precision for simulating
sparse Hamiltonians”. In: Forum of Mathematics, Sigma 5 (2017), e8. doi:
10.1017/fms.2017.2. arXiv: 1312.1414 [quant-ph] (pages 3–5).

[CGLLTW22] Nai-Hui Chia, András Pal Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin
Tang, and Chunhao Wang. “Sampling-based sublinear low-rank matrix
arithmetic framework for dequantizing quantum machine learning”. In:
Journal of the ACM 69.5 (Oct. 2022), pp. 1–72. doi: 10.1145/3549524.
arXiv: 1910.06151 [cs.DS] (pages 10, 12).

[GL22] Sevag Gharibian and François Le Gall. “Dequantizing the quantum sin-
gular value transformation: hardness and applications to quantum chem-
istry and the quantum pcp conjecture”. In: Proceedings of the 54th An-
nual ACM SIGACT Symposium on Theory of Computing. STOC 2022.
Rome, Italy: Association for Computing Machinery, 2022, pp. 19–32. isbn:
9781450392648. doi: 10.1145/3519935.3519991 (page 12).

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum
singular value transformation and beyond: Exponential improvements for
quantum matrix arithmetics”. In: Proceedings of the 51st ACM Symposium
on the Theory of Computing (STOC). ACM, June 2019, pp. 193–204. doi:
10.1145/3313276.3316366. arXiv: 1806.01838 (page 4).

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algo-
rithm for linear systems of equations”. In: Physical Review Letters 103 (15
Oct. 2009), p. 150502. doi: 10.1103/PhysRevLett.103.150502 (page 10).

[LC19] Guang Hao Low and Isaac L. Chuang. “Hamiltonian simulation by qubiti-
zation”. In: Quantum 3 (July 2019), p. 163. doi: 10.22331/q-2019-07-
12-163 (page 4).

[LMR14] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum principal
component analysis”. In: Nature Physics 10.9 (July 2014), pp. 631–633.
doi: 10.1038/nphys3029. arXiv: 1307.0401 [quant-ph] (page 12).

[MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.
“Grand unification of quantum algorithms”. In: PRX Quantum 2 (4 Dec.
2021), p. 040203. doi: 10.1103/PRXQuantum.2.040203. arXiv: 2105.02859
[quant-ph] (pages 3, 5, 6).

13

https://doi.org/10.1145/1993636.1993682
https://arxiv.org/abs/1011.3245
https://doi.org/10.4230/LIPIcs.CCC.2022.22
https://doi.org/10.1017/fms.2017.2
https://arxiv.org/abs/1312.1414
https://doi.org/10.1145/3549524
https://arxiv.org/abs/1910.06151
https://doi.org/10.1145/3519935.3519991
https://doi.org/10.1145/3313276.3316366
https://arxiv.org/abs/1806.01838
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1038/nphys3029
https://arxiv.org/abs/1307.0401
https://doi.org/10.1103/PRXQuantum.2.040203
https://arxiv.org/abs/2105.02859
https://arxiv.org/abs/2105.02859

[Ral20] Patrick Rall. “Quantum algorithms for estimating physical quantities using
block encodings”. In: Physical Review A 102.2 (Aug. 2020), p. 022408. doi:
10.1103/physreva.102.022408. arXiv: 2004.06832 [quant-ph] (page 4).

[RV07] Mark Rudelson and Roman Vershynin. “Sampling from large matrices: an
approach through geometric functional analysis”. In: Journal of the ACM
54.4 (July 2007), 21–es. issn: 0004-5411. doi: 10.1145/1255443.1255449.
url: https://doi.org/10.1145/1255443.1255449 (page 12).

[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. “Faster algorithms via approx-
imation theory”. In: Foundations and Trends in Theoretical Computer Sci-
ence 9.2 (2014), pp. 125–210. issn: 1551-305X. doi: 10.1561/0400000065
(page 7).

[Tre19] Lloyd N. Trefethen. Approximation theory and approximation practice,
extended edition. Extended edition [of 3012510]. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 2019, pp. xi+363. isbn: 978-1-
611975-93-2. doi: 10.1137/1.9781611975949 (pages 8, 9).

[Van11] Maarten Van den Nest. “Simulating quantum computers with probabilistic
methods”. In: Quantum Information and Computation 11.9&10 (Sept.
2011), pp. 784–812. issn: 1533-7146. doi: 10.26421/qic11.9-10-5. arXiv:
0911.1624 [quant-ph] (page 12).

[Vos91] Michael D. Vose. “A linear algorithm for generating random numbers with
a given distribution”. In: IEEE Transactions on Software Engineering 17.9
(1991), pp. 972–975. doi: 10.1109/32.92917 (page 10).

14

https://doi.org/10.1103/physreva.102.022408
https://arxiv.org/abs/2004.06832
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1561/0400000065
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.26421/qic11.9-10-5
https://arxiv.org/abs/0911.1624
https://doi.org/10.1109/32.92917

	Problem Set 1: The block-encoding
	Problem Set 2: The QSVT
	Problem Set 3: Polynomial approximation
	Problem Set 4: Dequantizing QSVT
	Problem Set 5: The power of classical

